AMERICAN MATHEMATICAL SOCIETY

Sunday, January 7,2007 « 1:00 - 5:00 PM
Joint Mathematics Meetings, New Orleans

(1:00 PM__ .
Robert Ghrist

Barcodes: The Persistent

KLE IH BDTTLE Topology of Data

2:00 PM___
Akshay Venkatesh

Flows on the Space of Lattices:
Work of Einsiedler, Katok and Lindenstrauss

Izabella Laba

B From Harmonic Analysis to
Arithmetic Combinatorics

Relative
TF probability

4:00 PM

Barry Mazur

The Structure of Error Terms in
Number Theory and an Introduction

to the Sato-Tate Conjecture 075 05 025 o5 o5 oS
Scaled error

Organized by David Eisenbud, Mathematical Sciences Research Institute



Introduction

Will the Riemann Hypothesis be proved this week? What is the
Geometric Langlands Conjecture about? How could you best
exploit a stream of data flowing by too fast to capture? | love the
idea of having an expert explain such things to me in a brief,
accessible way. | think we mathematicians are provoked to ask
such questions by our sense that underneath the vastness of
mathematics is a fundamental unity allowing us to look into many
different corners -- though we couldn't possibly work in all of
them. And I, like most of us, love common-room gossip.

The Current Events Bulletin Session at the Joint Mathematics
Meetings, begun in 2003, is an event where the speakers do not
report on their own work, but survey some of the most interesting
current developments in mathematics, pure and applied. The
wonderful tradition of the Bourbaki Seminar is an inspiration, but
we aim for more accessible treatments and a wider range of
subjects. I've been the organizer of these sessions since they
started, but a broadly constituted advisory committee helps
select the topics and speakers. Excellence in exposition is a
prime consideration.

A written exposition greatly increases the number of people who
can enjoy the product of the sessions, so speakers are asked to
do the hard work of producing such articles. These are made
into a booklet distributed at the meeting. Speakers are then
invited to submit papers based on them to the Bulletin of the
AMS, and this has led to many fine publications.

| hope you'll enjoy the papers produced from these sessions, but
there's nothing like being at the talks; don't miss them!

David Eisenbud, Organizer
Mathematical Sciences Research Institute
de@msri.org

For the PDF files of the talks given in other years, see
http://www.ams.org/ams/current-events-bulletin.html. The list of
speakersftitles from prior years may be found at the end of this
booklet.



http://www.ams.org/ams/current-events-bulletin.html

BARCODES: THE PERSISTENT TOPOLOGY OF DATA

ROBERT GHRIST

ABSTRACT. This article surveys recent work of Carlsson and collaborators on
applications of computational algebraic topology to problems of feature de-
tection and shape recognition in high-dimensional data. The primary math-
ematical tool considered is a homology theory for point-cloud data sets —
persistent homology — and a novel representation of this algebraic charac-
terization — barcodes. We sketch an application of these techniques to the
classification of natural images.

1. THE SHAPE OF DATA

When a topologist is asked, “How do you visualize a four-dimensional object?”
the appropriate response is a Socratic rejoinder: “How do you visualize a three-
dimensional object?” We do not see in three spatial dimensions directly, but rather
via sequences of planar projections integrated in a manner that is sensed if not com-
prehended. We spend a significant portion of our first year of life learning how to
infer three-dimensional spatial data from paired planar projections. Years of prac-
tice have tuned a remarkable ability to extract global structure from representations
in a strictly lower dimension.

The inference of global structure occurs on much finer scales as well, with regards
to converting discrete data into continuous images. Dot-matrix printers, scrolling
LED tickers, televisions, and computer displays all communicate images via arrays
of discrete points which are integrated into coherent, global objects. This also is
a skill we have practiced from childhood. No adult does a dot-to-dot puzzle with
anything approaching anticipation.

1.1. Topological data analysis. Problems of data analysis share many features
with these two fundamental integration tasks: (1) how does one infer high di-
mensional structure from low dimensional representations; and (2) how does one
assemble discrete points into global structure.

The principal themes of this survey of the work of Carlsson, de Silva, Edelsbrun-
ner, Harer, Zomorodian, and others are the following:

(1) It is beneficial to replace a set of data points with a family of simplicial
complexes, indexed by a proximity parameter. This converts the data set
into global topological objects.

(2) Tt is beneficial to view these topological complexes through the lens of alge-
braic topology — specifically, via a novel theory of persistent homology
adapted to parameterized families.

(3) It is beneficial to encode the persistent homology of a data set in the form
of a parameterized version of a Betti number: a barcode.

The author gratefully acknowledges the support of DARPA # HR0011-07-1-0002. The work
reviewed in this article is funded by the DARPA program TDA: Topological Data Analysis.
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2 ROBERT GHRIST

This review will introduce these themes and survey an example of these tech-
niques applied to a high-dimensional data set derived from natural images.

1.2. Clouds of data. Very often, data is represented as an unordered sequence of
points in a Euclidean n-dimensional space E". Data coming from an array of sensor
readings in an engineering testbed, from questionnaire responses in a psychology
experiment, or from population sizes in a complex ecosystem all reside in a space
of potentially high dimension. The global ‘shape’ of the data may often provide
important information about the underlying phenomena which the data represents.

One type of data set for which global features are present and significant is the
so-called point cloud data coming from physical objects in 3-d. Touch probes,
point lasers, or line lasers sweep a suspended body and sample the surface, record-
ing coordinates of anchor points on the surface of the body. The cloud of such
points can be quickly obtained and used in a computer representation of the ob-
ject. A temporal version of this situation is to be found in motion-capture data,
where geometric points are recorded as time series. In both of these settings, it is
important to identify and recognize global features: where is the index finger, the
keyhole, the fracture?

FIGURE 1. Determining the global structure of a noisy point cloud
is not difficult when the points are in E2, but for clouds in higher
dimensions, a planar projection is not always easy to decipher.

Following common usage, we denote by point cloud data any collection of points
in E”, though the connotation is that of a (perhaps noisy) sample of points on a
lower-dimensional subset. For point clouds residing in a low-dimensional ambient
space, there are numerous approaches for inferring features based on planar projec-
tions: reconstruction techniques in the computer graphics and statistics literatures
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are manifold. From a naive point of view, planar projections would appear to be
of limited value in the context of data which is inherently high dimensional or
sufficiently ‘twisted’ so as to preclude a faithful planar projection (Figure 1[right]).

A more global and intrinsic approach to high-dimensional data clouds has re-
cently appeared in the work of Carlsson and collaborators. This body of ideas ap-
plies tools from algebraic topology to extract coarse features from high-dimensional
data sets. This survey is a brief overview of some of their work. As a result of our
focus on techniques from algebraic topology, we neglect the large body of relevant
work in nonlinear statistics (which is rarely topological) and in computer graphics
(which is rarely high-dimensional).

1.3. From clouds to complexes. The most obvious way to convert a collection
of points {z,} in a metric space into a global object is to use the point cloud as the
vertices of a combinatorial graph whose edges are determined by proximity (vertices
within some specified distance €). Such a graph, while capturing connectivity data,
ignores a wealth of higher order features beyond clustering. These features can be
accurately discerned by thinking of the graph as a scaffold for a higher-dimensional
object. Specifically, one completes the graph to a simplicial complex — a space
built from simple pieces (simplicies) identified combinatorially along faces. The
choice of how to fill in the higher dimensional simplices of the proximity graph
allows for different global representations. Two of the most natural methods for so
doing are as follow:

Definition 1.1. Given a collection of points {x,} in Euclidean space E", the Cech
complex?, C,, is the abstract simplicial complex whose k-simplices are determined
by unordered (k + 1)-tuples of points {4}k whose closed €/2-ball neighborhoods
have a point of common intersection.

Definition 1.2. Given a collection of points {z,,} in Euclidean space E", the Rips
complex,? R, is the abstract simplicial complex whose k-simplices correspond to
unordered (k + 1)-tuples of points {x,}% which are pairwise within distance e.

The Cech theorem (or, equivalently, the “nerve theorem”) states that C. has
the homotopy type of the union of closed radius €/2 balls about the point set
{zo}. This means that C, though an abstract simplicial complex of potentially
high dimension, behaves exactly like a subset of E" (see Figure 2). The Cech
complex is a topologically faithful simplicial model for the topology of a point cloud
fattened by balls. However, the Cech complex and various topologically equivalent
subcomplexes (e.g., the alpha complex of [13]) are delicate objects to compute,
relying on the precise distances between the nodes in E".

From a computational point of view, the Rips complex is less expensive that the
corresponding Cech complex, even though the Rips complex has more simplices (in
general). The reason is that the Rips complex is a flag complex: it is maximal
among all simplicial complexes with the given 1-skeleton. Thus, the combinatorics
of the 1-skeleton completely determines the complex, and the Rips complex can be
stored as a graph and reconstituted instead of storing the entire boundary operator

LAlso known as the nerve.

2A more appropriate name would be the Vietoris-Rips complex, in recognition of Vietoris’
original use of these objects in the early days of homology theory [21]. For brevity we use the
term “Rips complex.”
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Ce Re

FIGURE 2. A fixed set of points [upper left] can be completed to
a a Cech complex C, [lower left] or to a Rips complex R, [lower
right] based on a proximity parameter e [upper right]. This Cech
complex has the homotopy type of the ¢/2 cover (S' v S v S1),
while the Rips complex has a wholly different homotopy type (S*V
S2).

needed for a Cech complex. This virtue — that coarse proximity data on pairs of
nodes determines the Rips complex — is not without cost. The penalty for this
simplicity is that it is not immediately clear what is encoded in the homotopy type
of R. In general, it is neither a subcomplex of E" nor does it necessarily behave
like an n-dimensional space at all (Figure 2).

1.4. Which €? Converting a point cloud data set into a global complex (whether
Rips, Cech, or other) requires a choice of parameter €. For e sufficiently small,
the complex is a discrete set; for e sufficiently large, the complex is a single high-
dimensional simplex. Is there an optimal choice for e which best captures the
topology of the data set? Consider the point cloud data set and a sequence of Rips
complexes as illustrated in Figure 3. This point cloud is a sampling of points on
a planar annulus. Can this be deduced? From the figure, it certainly appears as
though an ideal choice of e, if it exists, is rare: by the time € is increased so as
to remove small holes from within the annulus, the large hole distinguishing the
annulus from the disk is filled in.

2. ALGEBRAIC TOPOLOGY FOR DATA

Algebraic topology offers a mature set of tools for counting and collating holes
and other topological features in spaces and maps between them. In the context of



PERSISTENT TOPOLOGY OF DATA 5

()% (o) B
(o7 () B
(o) (o) i

FIGURE 3. A sequence of Rips complexes for a point cloud data
set representing an annulus. Upon increasing €, holes appear and
disappear. Which holes are real and which are noise?

high-dimensional data, algebraic topology works like a telescope, revealing objects
and features not visible to the naked eye. In what follows, we concentrate on
homology for its balance between ease of computation and topological resolution.
We assume a rudimentary knowledge of homology, as is to be found in, say, Chapter
2 of [15].

Despite being both computable and insightful, the homology of a complex asso-
ciated to a point cloud at a particular e is insufficient: it is a mistake to ask which
value of € is optimal. Nor does it suffice to know a simple ‘count’ of the number and
types of holes appearing at each parameter value e. Betti numbers are not enough.
One requires a means of declaring which holes are essential and which can be safely
ignored. The standard topological constructs of homology and homotopy offer no
such slack in their strident rigidity: a hole is a hole no matter how fragile or fine.

2.1. Persistence. Persistence, as introduced by Edelsbrunner, Letscher, and Zomo-
rodian [12] and refined by Carlsson and Zomorodian [22], is a rigorous response to
this problem. Given a parameterized family of spaces, those topological features
which persist over a significant parameter range are to be considered as signal with
short-lived features as noise. For a concrete example, assume that R = (R;)Y is
a sequence of Rips complexes associated to a fixed point cloud for an increasing
sequence of parameter values (e;)Y. There are natural inclusion maps

(2'1) Rl‘i’RQ‘i’““LRN71‘L>RN
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Instead of examining the homology of the individual terms R;, one examines the
homology of the iterated inclusions ¢ : H,R; — H,R; for all i < j. These maps
reveal which features persist.

As a simple example, persistence explains why Rips complexes are an acceptable
approximation to Cech complexes. Although no single Rips complex is an especially
faithful approximation to a single Cech complex, pairs of Rips complexes ‘squeeze’
the appropriate Cech complex into a manageable hole.

Lemma 2.1 (de Silva [10]). For any € > 0, there is a chain of inclusion maps
(2.2) R5‘—>C€\/§‘—>R€\/§.

(See [10] for the tight dimension-dependent bound smaller than /2.) This implies
that any topological feature which persists under the inclusion R, — Re is in
fact a topological feature of the Cech complex Cor when ¢ Je > V2. Moral: the
homology of the inclusion ¢, : H,R. — H,Re reveals information that is not
visible from H, R, and H.R. unadorned. This is a foreshadowing of the broader
idea of persistence arising in an arbitrary sequence of chain complexes.

2.2. Persistent homology. One begins with a persistence complex: a sequence
of chain complexes C = (C?); together with chain maps z : Ci — Ci*1. (For
notational simplicity, we do not index the chain maps z.) This is motivated by
having a sequence of Rips or Cech complexes of increasing e sampled at an increasing
sequence of parameters {¢;}. Since Rips or Cech complexes grow with ¢, the chain
maps ¢ are naturally identified with inclusions.

Definition 2.2. For i < j, the (7, j)-persistent homology of C, denoted HiHjV(C)
is defined to be the image of the induced homomorphism z, : H.(C?) — H.(C1).

As an example, consider the filtration R = (R;) of Rips complexes parameterized
by proximities ;. Lemma 2.1 implies that if €;/¢; > V2, then H ,iﬁj (R) # 0 implies
Hy(Cc;) # 0. Holes in the Cech complex are inferred by the persistent homology of
the Rips filtration.

There is a good deal more algebraic structure in the interleaving of persistent
homology groups, as explained in the work of Carlsson and Zomorodian. Fix a PID
of coefficients R and place a graded R[z]-module structure on C with z acting as a
shift map. That is, a unit monomial 2" € R[x] sends C? to Ci*" via n applications
of . One assumes a finite-type condition that each C! is finitely generated as an
R[z]-module and that the sequence stabilizes in ¢ (in the case of an infinite sequence
of chain complexes).

As the filtering of C is via chain maps x (c¢f. the setting of Rips complexes
— simplices are added but never removed as € increases), C is free as an R[z]-
module. The resulting homology H,(C) retains the structure of an R[z]-module,
but, unlike the chain module, is not necessarily free. Nor is it easily classified: the
Artin-Rees theory from commutative algebra implies that the problem of classifying
(finite-type) persistence modules such as H,(C) is equivalent to classifying finitely-
generated non-negatively graded R[z]-modules. This is known to be very difficult
in, say, Z[z].

However, for coefficients in a field F, the classification of F[z]-modules follows
from the Structure Theorem for PID’s, since the only graded ideals of F[z] are of
the form z" - F[z]. This implies the following:
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Theorem 2.3 ([22]). For a finite persistence module C with field F coefficients,

(2.3) H.(GF) E@Itl Fla] © @x” - (Flz]/ (2> - Flz]))

This classification theorem has a natural interpretation. The free portions of
Equation (2.3) are in bijective correspondence with those homology generators
which come into existence at parameter t; and which persist for all future parame-
ter values. The torsional elements correspond to those homology generators which
appear at parameter r; and disappear at parameter 7; 4+ s;. At the chain level,
the Structure Theorem provides a birth-death pairing of generators of C (excepting
those that persist to infinity).

2.3. Barcodes. The parameter intervals arising from the basis for H,(C; F) in
Equation (2.3) inspire a visual snapshot of Hy(C; F) in the form of a barcode. A
barcode is a graphical representation of Hy(C; F) as a collection of horizontal line
segments in a plane whose horizontal axis corresponds to the parameter and whose
vertical axis represents an (arbitrary) ordering of homology generators. Figure 4
gives an example of barcode representations of the homology of the sampling of
points in an annulus from Figure 3 (illustrated in the case of a large number of
parameter values €;).

o—°
C.!.‘
: R : ! !
1 I 1 1
1 I 1 1
1 I 1 1
°
! ~ : ! !
X ! : ! | ' :
= ‘ : ‘ : ' :
3 ‘ ‘ ‘ , ! ,
H:—,_—'_" | ! | ! |
0\_ 1 ' 1 H 1 !
= : ! : ' :
— ! | : | : |
! ! L.
! 1 — ! ! !
| ———— ! - \ ! |
| ‘ .= ! i
Hy| —_— = — : ! :
| ‘ |- T ! :
1 : I : 1 : 1
! ‘ ‘ ‘ . , Le
! ‘ : ‘ —_— ! !
Hy | | ! | ! i ! |
. J ‘ \ | ! L.

FIGURE 4. [bottom| An example of the barcodes for H,(R) in the
example of Figure 3. [top] The rank of Hy(R,,) equals the number
of intervals in the barcode for Hy(R) intersecting the (dashed) line
€ = €;.
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Theorem 2.3 yields the fundamental characterization of barcodes:

Theorem 2.4 ([22]). The rank of the persistent homology group H, 7 (C;F) is
equal to the number of intervals in the barcode of Hy(C; F') spanning the parameter
interval [i,4]. In particular, H.(C%; F) is equal to the number of intervals which
contain i.

A barcode is best thought of as the persistence analogue of a Betti number.
Recall that the k' Betti number of a complex, B := rankHj, acts as a coarse
numerical measure of Hy. As with [, the barcode for Hj does not give any in-
formation about the finer structure of the homology, but merely a continuously
parameterized rank. The genius of a barcode representation is the ability to qual-
itatively filter out topological noise and capture significant features. Indeed, as
shown in [7], barcodes are stable in the presence of noise added to a [Morse] fil-
tration. For example, in Figure 4, one sees (from a very coarse sampling) that the
point cloud likely represents a connected object with one or two significant ‘holes’
as measured by H; and no significant higher homology.

2.4. Computation. Most invariants in modern algebraic topology are not known
for their ease of computation. Homology (in its simplest manifestations) appears ex-
ceptional in that the invariants arise as quotients of finite-dimensional vector spaces.
In the context of applications, ‘finite’ may exceed reasonable bounds. There is no
recourse to chanting “Homology is just linear algebra,” when faced with millions
of simplices: one needs good algorithms. Fortunately, such exist with increasing
scope and speed. The text [16] gives a comprehensive introduction to issues of and
algorithms available for computing homology for realistic problems in application
domains.

More fortunate still, there is an excellent algorithm available for the computation
of persistent homology groups and barcodes. The algorithm takes as its argument
the filtered simplicial complex consisting of pairs (o, 7;), where o; is a simplex and
7; is the time at which that simplex appears in the filtration. This algorithm first
appears in the paper of Edelsbruner, Letscher, and Zomorodian [12] for simplicial
subcomplexes of E? with Zs coefficients and in that of Carlsson and Zomorodian
[22] for general persistence complexes with field coefficients. The Matlab-based
front end Plex by de Silva and Perry [11] incorporates the C++ persistent homol-
ogy library of Kettner and Zomorodian with tools for inputting and manipulating
simplicial complexes.

It is worth noting that for chain filtrations arising from realistic data sets, the
Rips complexes are of an unmanageable size. This necessitates efficient sampling
or reduction of the complex with accurate topology. The witness complex of de
Silva [8, 9, 14] is one solution to this problem.

2.5. Other directions. We note that the above is the briefest of treatments of
what quickly becomes a fascinating and very active sub-topic of computational
topology. For those interested in the algebraic-topological aspects of the theory, we
note the following recent developments:

e There are other filtrations besides those associated to Cech or Rips com-
plexes which are natural settings in which to contemplate persistence. The
Morse filtration of a space X outfitted with f : X — R is a filtration
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of X by excursion sets X; = {f~!((—o0,t])}. This (or a discretized ver-
sion thereof) is one commonly investigated setting [1, 7], as is filtration by
means of curvature data [5].

e Our discussion of persistence is couched in the setting of chain complexes
indexed by a single parameter. There are strong motivations for wanting
to treat multi-parameter families of complexes. However, there are funda-
mental algebraic difficult in constructing an analogous theory of persistence
modules in this setting [24].

e The computation of persistent relative homology is more subtle, since the
ensuing parameterized chain complex C is no longer free as an F[z]-module.
Bendich and Harer [in progress| have developed an algebraic construction
for defining and computing persistent homology which has a particularly
clean form in the setting of a Morse filtration. The analogue of Theorem
2.3 provides a perfect pairing of Morse critical points.

e The computation of persistent cohomology is not straightforward. As
shown by de Silva [in progress], if you take the graded free F[z]-module
chain complex C for the Morse filtration X; of a space X, and dualize it
as a graded free Flz]-module, i.e. if you construct Homp,(C, F[z]), then
the homology of the resulting object as a graded F[z]-module is not the
persistent cohomology of H*(X}), but rather that of the relative cohomol-
ogy H*(X, X;). Computing absolute persistent cohomology necessitates a
recourse to duality and the theory of Bendich-Harer above.

3. EXAMPLE: NATURAL IMAGES

One recent example of discovering topological structure in a high-dimensional
data set comes from natural images. A collection of 4167 digital photographs of
random outdoor scenes was assembled in the late 1990s by van Hateren and van der
Schaaf [20]. Mumford and others have posed several fascinating questions about
the structure and potential universality of the statistics of this and similar sets of
images in the context of visual perception [17].

3.1. “Round about the cauldron go”. Mumford, Lee, and Pederson [18] con-
struct a data set by choosing at random 5000 three-pixel by three-pixel squares
within each digital image and retaining the top 20% of these with respect to con-
trast. Each such square is a matrix of grey-scale intensities. The full data set
consists of roughly 8,000,000 points in E°. By normalizing with respect to mean
intensity and restricting attention to high-contrast images (those away from the
origin), the data set is projected to a set of points M on a topological seven-sphere
S7 c E®. The details of this data set construction requires a choice of natural
basis with respect to a particular norm for values of contrast patches. We refer the
interested reader to [18] for details.

3.2. “Hover through the fog”. So coarse a reduction of natural images (into
three-by-three squares of grey-scale intensities) still leads to a point cloud of too
high a dimension to visualize. Worse still, what structure is there is blurred and
foggy: points appear at first to be distributed over the entire S7. A resort to density
considerations is thus in order. The subject of density filtration is a well-trod area
of statistics: see, e.g., [19].
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A codensity function is used in [3] as follows. Fix a positive integer k£ > 0.
For any point x, in the data set, define x(v,) as the distance in E" from z, to
k' nearest neighbor of z, in the data set. For a fixed value of k, 8 is a positive
distribution over the point cloud which measures the radius of the ball needed to
enclose k neighbors. Values of 0 are thus inversely related to the point cloud
density. The larger a value of k used, the more averaging occurs among neighbors,
blurring finer variations.

The codensity is used to filter the data as follows. Denote by M|k, T the subset
of M in the upper T-percent of density as measured by d. This is a two-parameter
subset of the point cloud which, for reasonable values of k and T, represent an
appropriate core.

3.3. “When shall we three meet again?” The first interesting persistent ho-
mology computation on this data set occurs at the level of Hy: to what extent are
there ‘loops’ in the data set along which the cloud is concentrated?

Taking a density threshold of T = 25 at neighbor parameter k& = 300, with
5000 points sampled at random from M|k, T], computing the barcode for the first
homology H; reveals a unique persistent generator [3]. See Figure 5. This indicates
that the data set is diffused about a primary circle in the 7-sphere. The structure of
the barcode is robust with respect to the random sampling of the points in Mk, T].

The goal of the homology computation is to discover a ‘hidden’ feature of a data
set that is not discernable by clustering and connectivity alone. The simplest such
feature would be, as indicated by the computation above, a primary circle about
which the data is scattered. To what might this correspond? A close examination
of the data point corresponding to the primary circle reveals a pattern of 3-by-3
patches with one light region and one dark region separated by a linear transition.
This nodal curve between light and dark is linear and appears in a circular family
parameterized by the angle of the nodal line, as shown in Figure 5.

As seen from the barcode, this generator is dominant at the threshold and co-
density parameters chosen. An examination of the barcodes for the first homology
group Hi of the data set filtered by codensity parameter k& = 15 and threshold
T = 25 reveals a different persistent first homology. The reduction in & leads to
less averaging and more localized density sensitivity. The barcode of Figure 6 re-
veals that the persistent Hy of samples from Mk, T] has Betti number five. This
does not connote the presence of five disjoint circles in the data set. Rather, by
focusing on the generators and computing the barcode for Hy, it is observed [3]
that, besides the primary circle from the high-k H; computation, there are two
secondary circles which come into view at the lower density parameter.

A close examination of these three circles reveals that each intersects the high-
k primary twice, yet the two secondary circles are disjoint. To what features in
the data might these secondary circles correspond? As noted in [3], each secondary
circle regulates images with three contrasting regions and interpolates between these
states and the primary circle. The difference between the two secondary circles lies
in their bias for horizontal and vertical stratification respectively. Figure 7 gives an
interpretation of the meanings of the secondary circles.

3.4. “Come like shadows, so depart!” What is the good of temporary topo-
logical features which emerge and dissolve as a function of the parameter e¢? Does
this lead to anything more than a heuristic for high-dimensional data sets that are
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H,

F1GURE 5. The H; barcode for a random sampling of 5000 points
of M[300,25] yields a single generator. This generator indicates
the nodal line between a single light and single dark patch as being
the dominant feature of the primary circle in M.

hard to visualize? While the work of Carlsson et al. is very recent, there are several
applications of the topological approach to data analysis which argue in favor of
the proposition that homological structures in high dimensional data sets are of
scientific significance. Besides the Mumford data set reviewed here, persistent ho-
mology computations are being applied to geometric features of curves (e.g., optical
character recognition) [5] and visual cortex data from primate experiments [4].

With regards to the natural image data, it is instructive to think of the persistent
homology of M as something akin to a Taylor approximation of the true space. The
reduction of the full data set to an S7 via projection is really a normalization to
eliminate the zero-order (or “single patch”) terms in the data set. Following this
analogy, the H; primary generator fills the role of a next term in the expansion of the
homotopy type of the data set, collating the nodal curve between two contrasting
patches. The secondary circles, interpolating between single and dual nodal curves,
act as higher-order terms in the expansion, in which horizontal and vertical biases
arise.

It is here that one gets deeper insight into the data set. Inspired by the meaning
of the Hy barcodes of M, further investigation reveals what appears to be an
intrinsic bias toward horizontal and vertical directions in the natural image data, as
opposed to an artifact of the (right) angle at which the camera was held: [3] reports
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H,y

FIGURE 6. The H;y barcode for M(15,25] reveals five persistent
generators. This implies the existence of two secondary circles,
each of which intersects the third, large-k, primary circle twice.
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FIGURE 7. The secondary generators of Hy for M]15,25] have
an interpretation as regulating changes from dual-patch to triple-
patch high contrast regions in horizontal and vertical biases respec-
tively.

that a repetition of the experiment with a camera held at a constant angle 7 /4 yields
a data set whose secondary persistent H; generators exhibits a bias towards true
vertical and true horizontal: the axis of pixellation appears less relevant than the
axis of gravity in natural image data.

Is there any predictive power in the barcodes of the data set? Recent progress
[3] demonstrates the insight that a persistent topology approach can yield. The
barcodes for the second persistent homology Hy are more volatile with respect to
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F1GURE 8. A Klein bottle (projected against its ‘barcode’) [left]
is the non-orientable surface obtained by identifying opposite sides
of a square as shown [right].

changes in density and thresholding. This is not surprising: the lowest order terms
in any expansion are always most easily perceived. However, there is indication
of a persistent Ho generator (in Zsg coefficients) at certain settings of k and T.
Combined with the basis of H; generators, one obtains predictive insight to the
structure of the space of high-contrast patches. At certain density thresholds, the
Hj barcode, suitably trimmed with Occam’s razor, suggests a two-dimensional
completion of the low-k persistent H; basis into a Klein bottle (see Figure 8).
Recall that this non-orientable surface can be realized as an identification space of
a square as in the figure. Figure 9 illustrates an embedding of this surface in the
space of pixellated images. One notes that this is a natural completion of the low-
density persistent H; readings: the primary and secondary circles appear with the
appropriate intersection properties. Fortunately, Zo coefficients — most natural
for computer implementation — is efficacious in detecting Hs for a Klein bottle.

We emphasize that the point cloud data set M is vast, high-dimensional, and
not at all concentrated sharply along distinct features. A cursory viewing of the
data seems to indicate that the 7-sphere is filled densely with data points and that
there is seemingly no coherent structure to be found. It is through the lens of
persistent homology — suitably tuned and aimed — that cogent features emerge
and fade with changing parameters. These persistent generators, upon close ex-
amination, do correspond to meaningful structures in the data, inspiring a sensible
parametrization of the global structure of the data set. This is the type of explana-
tory power that any exemplar of good applied mathematics provides to a scientific
challenge.
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This document is intended as a (slightly expanded) writeup of my (antic-
ipated) talk at the AMS Current Events Bulletin in New Orleans, January
2007. It is a brief report on the work of Einsiedler, Katok and Lindenstrauss
on the Littlewood conjecture [5].

It is not intended in any sense for specialists and is, indeed, aimed at
readers without any specific background either in measure theory, dynamics
or number theory.

Any reader with any background in ergodic theory will be better served
by consulting either the original paper, or one of the surveys written by
those authors: see [7] and [12].

1. THE LITTLEWOOD CONJECTURE

1.1. For z € R, let ||z|| denote distance from « to the nearest integer.

It is not difficult to check that, for any a € R, there exists integers p, q
with1 < ¢ <@ and |oz—§| < ﬁ. In other words, [lqa| < 1/Q. The behavior
of ||qe||, as ¢ varies through integers, thereby reflects approzimation of a by
rational numbers.

The Littlewood conjecture concerns simultaneous approximation of two
numbers «, § by irrationals. It asserts that:

(1) lim inf n.||na||[|[n8]| = 0,
1
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whatever be «, 8. In words it asserts (in a somewhat peculiar-seeming way)

(2) «, may be simultaneously approximated, moderately well,

by rationals with the same denominator

My goal is to discuss, and give some of the context around, the following
theorem of M. Einsiedler, A. Katok and E. Lindenstrauss in [5]:

1.1. Theorem. The set of o, 5 for which (1) fails, has Hausdorff dimension
0.

The Theorem is proved using ideas from dynamics: namely, by studying
the action of coordinate dilations (e.g. (x,y,z) + (§,2y,2)) on the space
of lattices in R3. It is not important solely as a result about simultane-
ous Diophantine approximation, but because of the techiques and results in
dynamics that enter into its proof.

Several applications of this type of dynamics are surveyed in [7]. For now
it is worth commenting on two rather different contexts where exactly the
same dynamics arise:

e In the study of analytic behavior of automorphic forms (see [17] for
discussion and historical context)

o In the study of the analytic behavior of ideal classes in number fields,
see [8].

1.2. This document. I will try to stress:

(1) Dynamics arises from a (not immediately visible) symmetry group;
see §1.3; I will then discuss some historical context for this type of
connection (§2, §3).

(2) The dynamics that is needed is similar to the simultaneous action of
x — 2x,x — 3z on R/Z; see §4.3 for a description of these parallels.

(3) A sketch of just one of the beautiful ideas that enters in proving
Theorem 1.1 (see §5), which is to study the picture transverse to the
acting group.

A massive defect of the exposition is that I will make almost no men-
tion of entropy. This is an egregious omission, because the intuition which
comes from the study of entropy underpins much of the recent progress in
the subject. However, any serious discussion of entropy this would require
more space and time and competence than I have, and better references are
available. So, instead, I have given a somewhat ad hoc discussion adapated
to the cases under consideration.

I will not come even close to sketching a proof of the main result.

Let us make two notes before starting any serious discussion:

(1) The Littlewood conjecture, (1), is quite plausible. Here is a naive
line of heuristic reasoning that supports it. A consequence of what
we have said in §1.1 is that there exists a sequence ¢ — oo of pos-
itive integers so that gi|grc|| < 1. Barring some conspiracy to the
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contrary, one might expect that ||gi3|| should be small sometimes.
The problem in implementing this argument is that we have rather
little control over the gj.'

(2) Despite all the progress that I shall report on, we do not know that
the statement (1) is true even for a = V2,3 = /3. The question of
removing the exceptional set in Theorem 1.1 is related to celebrated
conjectures (see Conjecture 4.1 and Conjecture 4.2) of Furstenberg
and Margulis.

1.3. Symmetry. The next point is that the question (1) has a symmetry
group that is not immediately apparent. This is responsible for our ability
to apply dynamical techniques to it.

Pass to a general context for a moment. Let f(z1,...,2,) be an integral
polynomial in several variables. An important concern of number theory has
been to understand Diophantine equalities: solutions to f(x) = 0 in integers
x € Z" (e.g. does 22 —y? — 22 = 1 have a solution? Does 2* + 3 = 23 have
a solution?)

A variant of this question, somewhat less visible but nonetheless (in my
opinion) difficult and fascinating, concerns Diophantine inequalities: if f
does not have rational coefficients, one may ask about the solvability of an
equation such as |f(x)| < ¢ for x € Z" (e.g. does |z? 4+ y* — /222 < 1076
have a solution?)

In the most general context of an arbitrary f, our state of knowledge is
somewhat limited. On the other hand, for special classes of f we know more:
a typical class which is accessible to analytic methods is when the degree of
f is small compared to the number of variables.

Another important class about which we have been able to make progress,

consists of those f possessing symmetry groups. Both the examples x? —

y? — 22 =1 and 2% + y? — v/22% admit orthogonal groups in three variables

as automorphisms.? The homogeneous equation 2> 4 y* = 2® has symmetry

but not by a linear algebraic group (it defines an elliptic curve inside P?).
The Littlewood conjecture also has symmetry, although not immediately

apparent. To see it, we note that ||z| = inf,,cz |z — m|; consequently, we

may rewrite (1) as the statement:

(3)

[n(na —m)(nB — £)| < ¢ is solvable, with (n,m,£) € Z3,n # 0, for all € > 0

1Amusingly7 it is not even clear this heuristic argument will work. It may be shown
that given a sequence gx so that liminf gx4+1/gx > 1, there exists 8 € R so that ||g. 3| is
bounded away from 0. See [14] for this and more discussion.

2Although unimportant in the context of this paper, there is an important difference:
while 22 + y? — v/22? admits an action of the real Lie group O(2,1), the analysis of the
form z? + y? + 22 involves studying the action of the much larger adelic Lie group of
automorphisms. In particular, this adelic group is noncompact, even though the real
group O(3) is compact, and this is a point that can be fruitfully exploited; see [2].
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But the function L(n, m, £) = n(na—m)(nS —£) is a product of three linear
forms and admits a two-dimensional torus as group of automorphisms.?

2. THE OPPENHEIM CONJECTURE

Here we pause to put the developments that follow into their historical
context. The reader may skip directly to §4.

2.1. Statement of the Oppenheim conjecture. We briefly discussed
above the form z% 4+ y? — \/222. This is a particular case of a problem
considered in the 1929: A. Oppenheim conjectured that if Q(z1,...,z,) =
Zi, ; Qij T is an indefinite quadratic form in n > 3 variables which is not a
multiple of a rational form, then () takes values which are arbitrary small,
in absolute value.

In other words — note the analogy with (3) —

(4) |Q(x)| < ¢ is solvable, with x € Z", for all ¢ > 0

When n is sufficiently large his conjecture was solved by Davenport (in
1956) by analytic methods. His paper required n > 74. This is an example of
the fact, noted in §1.3, that purely analytic methods can often handle cases
when the number of variables is sufficiently large relative to the degree.

On the other hand, the complete resolution of the conjecture* had to wait
until G. Margulis, in the early 1980s, gave a complete proof using dynamical
methods that made critical use of the group of automorphisms of Q.

2.2. Symmetry. Let H = SO(Q), the group of orientation-preserving lin-
ear transformations of R preserving (). By definition Q(x) = Q(h.x). We
wish to exploit® the fact that H is large.

In particular, in order to show (4), it suffices to show that @ takes values
in (—¢,¢) at a point of the form h.x(h € H,x € Z"). A priori, this set
might be much larger than Z™; certainly, if it were dense in R”, this would
be enough to show (4).

For instance, if we could prove that

(5) The set h.x : h € H, x € Z" contains 0 in its closure

then (4) would follow immediately.

3The n-dimensional version of the Littlewood conjecture takes n linear forms ¢4, ..., ¢y,
and asks: is the equation 0 < [{1(x)...4n(x)| < € solvable? Conjecturally, this is so if
n > 3 and {;...4, is not a multiple of a rational polynomial. It is false for n = 2, see
footnote 4.

4The analogous statement is false for n = 2: take, e.g. Q(z,y) = (z — v2y)y. To sce

2 2
that, write Q(z,y) = (?z;j%y)>y'

5The idea that this should be exploitable was suggested by M. Raghunathan. It is also
implicitly used in a paper of Cassels and Swinnerton-Dyer from the 1950s.
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2.3. Lattices. (5) is rather nice, but a little unwieldy. We would rather
deal with the H-orbit of a single point rather than an infinite collection.
This can be done by “packaging” all x € Z™ into a single object: a lattice.

A lattice in R™ is simply a “grid containing the origin”, i.e. a set of all
integral combinations of n linearly independent vectors vy,...,v,. Every
such lattice is of the form ¢.Z" for some g € GL(n,R).

Let L, be the set of lattices’ and let £,[e] be the set of lattices that
contain v € R” with Euclidean length ||v|| < e. So Z™ can be thought of as
a point [Z"] € L,.

Then (5) would follow if:

(6) H.[ZM O Lyle] # 0, foralle >0

This is a statement that fits cleanly into the context of dynamics: does the
orbit of the point Z" € L,, under the group H, intersect the subset £, [e]?
It is (6) which was proven by Margulis.

2.4. Background on the space of lattices. To each lattice we can as-
sign a natural invariant, its covolume. This is the absolute value of the
determinant of the matrix with rows vy,...,vy,; that is to say, the volume
of a fundamental parallelpiped > \;v; : \; € [0,1). For ¢ € GL(n,R) and
L € L, we observe that covol(g.L) = | det g|covol(L). In particular, because
all h € H have determinant 1, all elements in H.Z™ have covolume 1. So
H.Z"™ belongs to the subset

(7 Ly, ={L € Ly, : L has covolume 1.}

The space L,, is more pleasant to work with than Zn The map g — ¢.[Z"]
identifies £, with the quotient GL(n, R)/GL(n,Z) and £, with the quotient
SL(n,R)/SL(n, Z). These identifications give rise to topologies on L, and
Ly; indeed, they are given the structure of manifolds.

Although £,, is not compact, it admits a natural SL(n, R)-invariant mea-
sure which has finite volume, which is a reasonable substitute for compact-
ness. Moreover, Mahler’s criterion gives a precise description of in what way
L, fails to be compact:

2.1. Theorem. A subset K C L,, is bounded (=precompact) if and only if
it does not intersect Ly[e], some € > 0.

In words, it asserts that the only way that a sequence of lattices L1, Lo, . ..
in £, can degenerate (leave any compact set in £,) is if there exist vectors
vi € L1,vo € Lo, ... so that HVZH — 0.

We may therefore rephrase (6): The Oppenheim conjecture would follow
if
(8) H.[Z"] is unbounded in L.

6We will later work almost exclusively with the subset of £ C En consisting of lattices
of volume 1; therefore, for notational simplicity, we prefer to put a tilde for the whole
space of lattices and omit it for the subset L,,.
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3. UNIPOTENTS ACTING ON LATTICES.

Obviously, the statement (4) is false for @ positive definite, and, as ob-
served in footnote 4, (less obviously) false for @ in two variables. How are we
to detect this difference when considering the problem from the dynamical
viewpoint of (6) or (8)7?

3.1. Unipotents from Margulis to Ratner. An important difference is
that the group H is isomorphic to SO(n) C GL(n,R) in the first case, and
SO(1,1) € GL(2,R) in the second case. In either case, the group H consists
entirely of semisimple elements. Margulis’ idea was to exploit the fact that,
if @ is indefinite in n > 3 variables, the group H contains unipotent elements,
i.e. g € GL(n,R) for which all of the (generalized) eigenvalues of g are equal
to 1.

At a vague level, the reason why these might be helpful is quite easy
to state: if u € GL(n,R) is unipotent, the matrix entries of u™ grow only
polynomially in n. This contrasts sharply with the behavior of a “typical”
element g € GL(n,R), when these entries will grow expontially. This means
that, when studying the trajectory uxo, u’zo, u3xo, ..., we are able to “re-
tain information” about it for much longer.

3.2. Ratner’s theorem. We will not say anything about the specifics of
Margulis’ proof; see [1] for an elementary presentation. A far-reaching gen-
eralization of Margulis’ result, which has been of fundamental importance
for later work, is the following (special case of a) theorem of Ratner, see [15]
and [16]: 7

3.1. Theorem. Let H C SL(n,R) be generated by one-parameter unipotent
subgroups.® The closure of the orbit H.[Z"] inside L,, is of the form H'.[Z"]
for a closed subgroup H' > H. Moreover, there exists an H'-invariant prob-
ability measure on H'.[Z"].

This is a difficult theorem, which settled a conjecture of M. Raghunathan.
The orbit H.[Z"] can be extremely complicated. Ratner’s theorem asserts
that its closure is determined by a very simple piece of algebraic data: a
subgroup intermediate between H and SL(n,R).

Let us see how this implies (6). The group H = SO(Q) is mazimal inside
SL(n,R). So Theorem 3.1 means that either H.[Z"] is closed or H.[Z"]
is dense in £,. It may be seen that H.[Z"] is closed only if the form Q
is a multiple of a rational form. In this fashion, Theorem 3.1 implies the
Oppenheim conjecture.

"Ratner’s theorem is phrased not just about spaces like £, = SL(n,R)/SL(n, Z), but
more general quotients of Lie groups by discrete subgroups.
8i.e. of the form exp(tX) where X is a nilpotent matrix.



THE LITTLEWOOD CONJECTURE 7

3.3. An idea from the proof of Theorem 3.1: Measures not sets.
Because our concern is not with unipotent dynamics here, we will not try
to indicate any of the ideas of the proof of Theorem 3.1 that are specific to
properties of the unipotent flows.

Instead, we will emphasize a more philosophical point from the proof of
Theorem 3.1 that has been indispensable in later work.

9) Measures are often easier to work with than sets.

To be a little more specific, let us comment on how Ratner’s proof of
Theorem 3.1 works. Let us take the simple case when H consists entirely
of unipotent elements. (A comprehensive exposition of the proof is to be
found in [18]).

Ratner begins by classifying the probability measures on L, that are in-
variant under H. The topological statement of Theorem 3.1 is then deduced
from the classification of H-invariant probability measures.

The relation between probability measures and invariant sets is quite
simple: an invariant probability measure has a support, which is a closed
H-invariant set. Conversely, Y C L, is an H-invariant closed set, it must
support an H-invariant probability measure (average your favorite measure
under H — note that this requires H to be amenable.) This relation is a
good deal more tenuous than one would like — the support of the measure
constructed this way may be strictly smaller than Y — and the deduction
of statements concerning invariant sets from statements about probability
measures is not formal.

Nonetheless, what is gained by going through measures? Measures have
much better formal properties than sets. A particularly important difference
is that an H-invariant probability measure can be decomposed into “min-
imal” invariant measures (ergodic decomposition). 9 That property does
not seem to have a clean analogy at the level of H-invariant closed sets. In
particular, an H-invariant closed set always contains a minimal H-invariant
closed set, but cannot be decomposed into minimal H-invariant closed sets
in any obvious way.

This is not to say that it is necessarily impossible to prove Theorem 3.1
by purely topological methods. Indeed, Margulis’ original proof of (6) was
purely topological (and utilized a study of minimal H-invariant closed sets).
But, to my knowledge, no such proof has been carried out in the general
case.

9The set of H-invariant probability measures forms, clearly, a convex set in the space
of all probability measures. Any point in this convex set can be expressed as a convex
linear combination of extreme points. These extreme points are called ergodic measures
for H and are “minimal”, in the sense that they cannot be expressed nontrivially as an
average of two other H-invariant probability measures.
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4. THE DYNAMICS OF COORDINATE DILATIONS ON LATTICES, I:
CONJECTURES AND ANALOGIES.

We have seen that the assertion (4) about the values of the quadratic
form x2 + y* — v/22% can be converted to the assertion (6) about the orbit
of [Z"] under the group H = SO(Q). We now briefly carry through the
corresponding reasoning in the case of the Littlewood conjecture. This will
lead us to study the action of the diagonal group As inside GL(3,R), on L.

4.1. Reduction to dynamics. Let P(z1, 22, 23) = x1(ax1 —22) (821 —3).
We have seen (see (3)) that the Littlewood conjecture is (almost, with a
constraint z; # 0) equivalent to the assertion that |P(x)| < € is solvable.
Let T be the automorphism group of P, that is to say, the set of g € GL(3,R)
such that P(g.x) = P(x). T contains a conjugated copy of the group of
diagonal matrices.

So P(a.x) = P(x) for a € T. It would appear to be enough to show that
{a.x : a € T,x € Z"} approaches arbitrarily close to 0; or, repeating the
line of implications (4) <= (6) <= (8), it secems to be enough to show
that T.[Z"] is unbounded in £,.

This is not quite right, though: T.[Z"] being unbounded in £,, indeed
would produce solutions to |zi(z1a — z2)(x18 — x3)| < €, but, regrettably,
provides no guarantee that x; # 0.

However, this can be avoided by replacing T" with a certain subsemigroup
T+ C T engineered specifically to avoid this. Moreover, T' contains a con-
jugate copy of As as a finite index subgroup, we can rephrase this assertion
in terms of the dynamics of As, not of T.

We will not go through the details, but rather will explicate the re-
sult of going through this process: if L, 3 C R? is the lattice spanned by
(1,a,5),(0,1,0) and (0,0, 1), the Littlewood conjecture for («, 3) is equiv-
alent to:

(10)

AT Ly g is unbounded in £,, A7 = { cx<ly>1,2>1}

S O R
ow O
[\ S en i an}

The reader can easily verify (10) directly.

We are led to study the action of A, on £,, and in particular, to seek an
analogue of Theorem 3.1. The obstacle will be that the analogue of The-
orem 3.1 totally fails for (conjugates of) Ay acting on Ly. There exists a
plethora of orbit closures that do not correspond to closed orbits of interme-
diate subgroups Ay < H < SL(2,R). (This corresponds roughly to the fact

10 & suitable coordinate system, P becomes P(x1,z2,23) = z1z2x3. But the set
of linear transformations that preserve (z1,z2,x3) — x1z2x3 consist of all permutation
matrices whose determinant is £1, according to the sign of the permutation.
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that there are many « for which liminf n|na| > 0, i.e. the “one variable”
Littlewood conjecture is false.)

4.2. An analogy with x2 x 3 on S'. Let us reprise: we are studying the
action of the group A, (diagonal matrices of size n, with determinant 1) on
the space £, = SL(n,R)/SL(n,Z); or, geometrically, we are studying the
action of coordinate dilations on grids in R™.

A very helpful analogy in studying the action of A, on £, is the following:

(11) Action of Ay on Ly behaves like 2 — 2z on R/Z;
(12)  Action of A3 on L3 behaves like z — 22,z — 3z on R/Z

Note that A3 is a two-parameter (continuous) group, whereas z — 2z, x —
3z generate a two-parameter (discrete) semigroup.

These analogies appear to be quite strong, although I do not know of any
entirely satisfying “reason” for them. The analogy between (As, L2) and
(x2,R/Z) is particularly strong: in a fairly precise sense!l, the action of a
suitable element a € As on Ly behaves like a shift on {0, 1}Z7 whereas the
action of z +— 2z behaves like a shift on {0,1}N. We will list in the next
section some results and questions in both the £ and R/Z cases and see they
are quite analogous.

For the moment, let us just observe that the action of z — 2z on R/Z
is fundamentally different to the simultaneous action of z — 2z,z +— 3.
Indeed, the trajectory {2"z} of a point under & — 2z essentially encodes
the binary expansion of z, which can be arbitrarily strange (cf. Lemma
4.1). For instance, there exist uncountably many possibilities for the closure
{27z}. On the other hand, it is much more difficult to arrange that the
binary and ternary expansions of a given = be simultaneously strange. This
means it is much harder to arrange that the orbit of x under z — 2"3™x be
strange, and indeed it is known that the possibilities for the closure {2"3™z}
are very simple (see Theorem 4.1).

Correspondingly, one might hope that the fact that Theorem 3.1 fails for
(Ag, L2), as commented at the end of §4.1, might be a phenomenon that
vanishes when one passes to (A, £,) for n > 3. Indeed, this is believed to
be largely the case.

4.3. Conjectures and results for x2 x 3 and for A,. Recall that a
probability measure v invariant under a group G is said to be G-ergodic if
any G-invariant measurable subset S has either v(S) =1 or v(S) = 0. An
equivalent definition is found in footnote 9. We observe that a classification
of G-invariant ergodic probability measures is as good as a classification of
G-invariant probability measures, for any G-invariant probability measure
can be expressed as a convex combination of G-invariant ergodic probability
measures.

11e.g. the systems are measure-theoretically isomorphic
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We shall also make use in this section of the notion of positive entropy;
for a definition see (19), but the reader might be better served by simply
treating it as a black-box notion for the moment and reading on.

Formalizations of some of the intuitions we suggested in the previous
section are to be found in the following results. They state, in that order,
that:

e There are a huge number of closed invariant sets for z +— 2x.

e There are very few closed invariant sets for x — 2z, +— 3z simul-
taneously (and a clean classification)

e Conjecturally, there are very few invariant probability measures un-
der x +— 2z, x +— 3z;

e One can prove the third assertion under an additional assumption
on the measure, positive entropy.

4.1. Lemma. There exists orbit closures {2"x},>0 of any Hausdor{f dimen-
sion between 0 and 1.

Similarly, there exist “very many” probability measures on R/Z invariant
under z — 2z. (A measure is said to be invariant under x — 2z if the
integral of f(z) and f(2x) is the same, for f a continuous function).

4.1. Theorem. (Furstenberg) The orbit closure {2"3™x}, <o is R/Z or
finite, according to whether x is irrational or rational.

4.1. Conjecture. (Furstenberg) Let u be a probability measure on R/7Z that
s invariant under x — 2z and x — 3z and ergodic w.r.t. x — 2x,T — 3.
Then p is either Lebesgue measure, or supported on a finite set of rationals.

4.2. Theorem. (Rudolph) Let p be a probability measure on R/Z that is
invariant under x — 2x and x — 3x and ergodic w.r.t. x — 2x,x +— 3z,
and so that either X2 or X3 acts with positive entropy. Then p is Lebesque
measure.

Now let us enunciate the analogues of these statements for A, acting on
L,. They state, in this order, that:

e There are a huge number of orbit closures and invariant measures
for Ay acting on Ls.

o Conjecturally, there are very few closed sets for A, acting on L,,
when n > 3. The statement here is not as satisfactory as in the
(x2 x 3,R/Z) case.

e Conjecturally, there are very few invariant probability measures on
L, under A,,, when n > 3.

e One can prove the third assertion under an additional assumption
on the measure, positive entropy.

4.2. Lemma. There ezists orbit closures As.x of any Hausdorff dimension
between 1 and 3.
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Similarly, there exists “very many” probability measures on Lo invariant
by AQ.

The following conjectures are stated (in a considerably more general form)
in [13].

4.2. Conjecture. (Margulis) The orbit closure Ap.x (forn >3 andx € L,,)
is, if compact, a closed A, -orbit. '

4.3. Conjecture. (Margulis) Let p be a probability measure on Ly, that is
invariant under A, and ergodic w.r.t. A,. Then!3 i coincides with the H'-
wmwariant measure on a closed orbit H'xgy, for some subgroup A, < H' <
SL(n,R).

4.3. Theorem. (Finsiedler-Katok-Lindenstrauss) Let u be a probability mea-
sure on L, that is invariant under A, and ergodic w.r.t. Ay, so that some
element of A, acts with positive entropy. Then u is algebraic.

Theorem 4.3 is the main theorem of [5]. The result concerning Little-
wood’s conjecture is deduced from it. It should be noted that, while Theo-
rem 4.3 is closely analogous to Theorem 4.2, the technique of proof is quite
different.

In the remainder of this article, we shall indicate one key idea that enters
not only into the proof of 4.3, but into the proof of all results in that line
proved so far, including [4] and [11].

5. COORDINATE DILATIONS ACTING ON LATTICES, II: THE PRODUCT
LEMMA OF EINSIEDLER-KATOK

The contents of this section are sketchy and impressionistic! For concrete-
ness, we will primarily confine ourselves to the action of A3 on L3.

The main thing which the reader might come away with is the impor-
tance and naturality of conditional measures. The study and usage of con-
ditional measures is a formalization of the following natural idea: given an
As-invariant measure p on L3, study p along slices transverse to Az. Note
that the action of Ag contracts part of these slices and dilates other parts.

The ideas we will discuss in this section are contained in the important
paper [4] of Einsiedler and Katok; we will not discuss the new ideas intro-
duced in [5]. Those new ideas stem from [11] and are, indeed, essential to
get the main result on the Littlewood conjecture. On the other hand, the
ideas from [4] that we now discuss have been fundamental in all the later
work in this topic.

12This is not quite as good as a complete classification of orbit closures, and, indeed,
[13] posits a more precise classification. Conjecture 4.2 is just a simple clean statement
that can be extracted from this classification.

13 e. “the measure-theoretic analogue of Theorem 3.1 holds for A,, acting on L,.”
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5.1. Closed sets. Before we embark on describing some of the ideas in [4],
we begin by explaining how one might try to approach the analysis of As-
invariant closed sets. We then explain — in the spirit of §3.3 — why it might
be helpful to switch to measures.

Suppose 0 C L3 is an As-invariant closed set.

We wish to study the behavior of ¢ in directions transverse to Az. Let e;;
be the elementary matrix with a 1 in the (4, ) position and Os everywhere
else; for ¢ # j let ny;(x) = exp(z.e;;). Then N = {n;j(z) : x € R} is a
subgroup of SL3(R).

A natural way of studying, then, of how o behaves transverse to As are
the subsets:

od:={tcR:ny(t)x€o} CR
This set is a closed subset of R and is defined for all x € L3.

Now, we wish to use the fact that a typical element a € A3 can contract
some N;;s and expand others.

12 0 0
Let us take an explicit example: the matrix a = 0 1/2 0 |. It
0 0 4

centralizes Nyo but it shrinks Nag, that is to say:
a.ngz(x).a”" = na3(z/8)

Now consider two points x1,x2 € ¢ which lie along the Nog direction from

one another, i.e. xo € Nogxi. Let us compare a;? and Ug. Because our
element a centralizes V12,

12 _ 12 _ 12 _ 12 _ 12 _ 12 _
(13) Opy = Onyy =0p2, =... AND o =00 =05, =....

But a*z; and a*zy are becoming very close as k — 0o — because a shrinks
the direction Nog. Therefore, if we had some version of the statement

12

(14) Wishful thinking: as z approaches y, o1? approaches oy

k

we could deduce from (13) — by considering a*z1,a*zy as k — oo — the

following surprising fact:

(15) o2 =12 (NOT proved, based on wishful thinking!)

1 x2

In other words, were some version of (14) true: we would have a rather
weak version of the following statement: the behavior of a closed set ¢ in
the Njs-direction, is constant along the Nas-direction. It is not immediate
how to wuse this, but nonetheless it is an important structural fact. (See
discussion after Lemma 5.1 for an indication of how the measure-theoretic
version of this fact is used). It is quite surprising, because we assumed
nothing about the behavior of o besides As-invariance.

In order to get any mileage, of course, we need to be able to find points
21, xo which differ in the Nog directions; or equivalently, the sets Ugjcv 23 should
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have more than one point. So in order to have any hope of using this entire
setup, we should also have:

(16) The sets oriv “ should not always be singletons.

Let me emphasize that the above is, indeed, essentially wishful thinking,
and is based on the rather baselessly optimistic (14). The surprising fact is
that, by working with measures, we can salvage a version of (14).

5.1. Example. Take a closed subset S of the square [0,1]%. Let 7w : [0,1]*> —
[0,1] be the projection. For each x € [0,1], we can consider the set Sy =
7 Y({z}) N S. There is no reason that nearby xs should have similar Sys;
this is the failure of (14).

However, a measure-theoretic version of this is valid. If u is a probability
measure on [0,1]%, we can disintegrate it along fibers: we can write y =
fxe[o,l} pedv(z), where v = mu is the pushed-down measure on [0,1], and

pie s a probability measure supported on the fiber w1 ({x}). The s are
the measure-theoretic analogue of Sy; and:

17)  On a set of measure 0.999999 the function x +— p, is continuous.
(17) [z

In other words, throwing away a set of small measure, we can think of the
Uz as satisfying a version of (14).

5.2. What comes next. Einsiedler and Katok implement the strategy dis-
cussed in §5.1, but in the world of measures, not sets.

e Rather than an As-invariant closed set o, we start with an As-
invariant probability measure u.

e The analogue of Ji\] “ C R is played by conditional measures 3 €
Measures(R) discussed in §5.3. (Note that these are not probability
measures in general, and may have infinite mass.)

e The assumption (16) that o3/ not be singletons is replaced by the
assumption that py not be atomic (a multiple of a point mass),
which will be needed in both Theorem 5.1 and Theorem 5.2.

e One can prove the analogue of (15): it is the product-lemma, Lemma
5.1.

5.3. Conditional measures: the analogue of the ¢/ for measures.
Let a nice group G (e.g. G = Njj) act on a nice space X (e.g. X = L3).

Given a closed subset S C X, we can define the sets 0¥ = {g € G :
gx € S}, which isolates behavior of S along the G-direction. Now we want
to define a similar concept but with the set S replaced by a probability
measure £, and replace the closed subset ¢¢ C G by a measure u$ (or just
Uz) on G.

This can indeed be done in a canonical way, except that the measures pi;
are defined only up to scaling by a positive number. In other words, there
exists an association x +— p, from points of X to measures on G, referred
to as conditional measures along G, with the following properties:
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(1) The map z — p, (thought of as a map from X to measures on G)
is itself measurable.

(2) For g € G and 2 € X so that both pg, and p, are defined, the
measures fig, and g.p, are proportional' (one would like to say
“equal” but everything is defined only up to a positive scalar).

(3) Let B be any open ball containing the identity in G. Then . (B) > 0
for almost all z € X.

(4) p is invariant under the G-action if and only if p, is a Haar measure
on G for almost all z € X.

Let’s briefly describe how to do this when X is general but G is finite.
In that case, one can normalize the u, canonically by requiring them to be
probability measures on the finite set G. We will just describe the function
x — g ({1}); then (2) determines p, totally (in this case, after normalizing
the ., the o< of (2) becomes equality).

Average p under G to get a measure v, w.r.t. which p is absolutely
continuous. Therefore, by the theorem of Radon and Nikodym, there exists
a function f € L'(v) so that p = f, ie. p(S) = [qfdv. Then f(z) =
pz({1}) almost everywhere, when matters are normalized so that pu, is a
probability measure.

Returning to the context of an As-invariant measure p on L3, we denote
by pi the measure on N;; & R defined by the process described above,
applied to the action of N;; on L3.

5.4. From product lemma to unipotent invariance. Let p be an As-
invariant measure on L£3. The following is established in [4], Corollary to
Proposition 5.1.

5.1. Lemma. [Product lemma] Let j1 be an As-invariant measure on L3.
Then, for (k,0) # (i,7), (j,i) we have /‘;ka(t)x o i, for pkt-almost all
t € R, and for p-almost every r € X.

The reasoning is a measure-theoretic version of that already discussed in
(5.1). Thus Lemma 5.1 is “just” a consequence of the fact that it is possible
to “shrink” the Ny, while leaving N;; unchanged.

We say that ug is trivial if it is proportional to the Dirac measure sup-
ported at 0, i.e. if uz (f) oc f(0) for every continuous function f on the real
line. To make usage of the s, one really needs them to be nontrivial for
almost all z. This is the analogue of (16).

Now let us briefly — and very heuristically — indicate how one might use
Lemma 5.1. The assertion (5.1) says, in particular, that the value of z ~— 13
is “the same” (at least, proportional) at x and at nio(t)z, except for a set
of t of u&w)—measure 0. If p!2 is far from being atomic, we can find plenty of
t # 0 for which this will be true. Similarly, if 23 is far from being atomic,

MHere g.p1, is the measure defined as g-pe(S) = pz(Sg) for a subset S C G.
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we can find plenty of s for which the value of z + 13 is the same at x and
at nag(s)z.

Applying this argument repeatedly, we may hope to find ¢, s so that p'3
takes proportional values at x and nja(t)nas(s)nia(—t)ngs(—s)z. But the
groups Ni2 and Na3 do not commute: indeed nia(t)nes(s)nia(—t)nas(t) =

ni13(ts). This shows that u;”’) is proportional at xg, and at ny3(ts)w.

This says something quite strong: the measure uxw on the real line is
proportional to its translate under ts! A simple auxiliary argument shows
that we can find enough (¢,s) to force u&”’) to be Lebesgue measure on
R; so (by property (4) of conditional measures) u is invariant by Nig. At
this point we have invariance in a unipotent direction; and one may apply
the measure-theoretic version of Ratner’s theorem (Theorem 3.1, see also
discussion of §3.3) to classify possibilities for y.1?

In words, (5.1) combines with the noncommutativity of the subgroups N;;
to show that p is invariant in a unipotent direction.

The conclusion of this line of reasoning is the following, part of [4, Theo-
rem 4.2]:

5.1. Theorem. Suppose ji is an As-ergodic measure on L3 so that, for every
i # j and for a positive measure set of v € X, the measure pg is nontrivial.
Then p is Haar measure.

Here Haar measure refers to the unique SL3(R)-invariant probability mea-
sure on L3. New ideas introduced by Lindenstrauss (based on his earlier
work [11]) allowed this to be refined to the following result, which is (as we
briefly discuss in §5.6) equivalent up to rephrasing to Theorem 4.3.

5.2. Theorem. Suppose p is an Az-ergodic measure on L3 so that, for at
least one pair i # j and for a positive measure set of x € X, the measure
uz is nontrivial. Then p is Haar measure.

Suitable analogues of these theorems are true replacing (As, L3) by (An, £,).
In that case there are, in general, more possibilities for p besides Haar mea-
sure, as in the statement of Theorem 4.3.

The question of removing the assumption in Theorem 5.2 seems to be
a very difficult and fundamental one. If one could do so, the Littlewood
conjecture (without any set of exceptions) would follow.

5.5. Back to Theorem 1.1. Now let’s return to Theorem 1.1, which can
be attacked using Theorem 5.2 and the relation between sets and measures.
We claim that for any fixed positive 0,

(18) BoxDimension {(a, 3) : inf n.||ne|.||ng|| > 6} =0

from this it is easy to deduce Theorem 1.1.

1511 fact, in [4], the use of Ratner’s theorem was avoided by applying this argument
repeatedly, with 13 replaced by various j.
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We saw that in the discussion preceding (10) that the failure of the Lit-
tlewood conjecture for a fixed pair («, 3) would correspond to the A:}f-orbit
of a certain Lo g € L3 being bounded. If (18) fails, indeed, there exists a set
of lattices L, g of box dimension > 0.01 (say) whose Aj-orbits all remain
within a fixed bounded set inside L3.

So the closure Y of A7 .{La s} is a bounded, A7 -invariant closed set on
L3 with box dimension > 2.01 ((the extra 2 comes from taking the As-orbit;
in words it means that Y has thickness transverse to the As-direction).

In what follows, let us ignore the distinction between A; and As for sim-
plicity. The necessity of dealing with A;{ complicates the argument slightly.
So, let us assume that Y was actually As-invariant.

We construct a As-invariant measure p supported on Y. It turns out that
the fact that Y has thickness transverse to the As-direction translates into
the fact that it is possible to choose p so that at least one of the conditional
measures /i;; is nontrivial for almost all z. But then Theorem 5.2 shows that
w has to be Haar measure. So the support of p is all of £3 and p cannot be
supported on the bounded set Y — a contradiction.

We observe that the need to allow a set of exceptions in Theorem 1.1
arises from the condition in Theorem 5.2 concerning conditional measures
(equivalently, the positive entropy condition — see below). Removing that
condition would settle the Littlewood conjecture in whole.

5.6. Positive entropy. The theorems 5.1 and 5.2 are not useful without a
reasonable way to verify the conditions on . The utility of these results
stem, in enormous part, from the fact that there is a very usable way to
verify the conditions. This is provided by the theory of entropy, and, in
many other applications, it is through entropy that these conditions have
been verified. Indeed, even the discussion in §5.5 is made rigorous using
entropy.

The importance of entropy justifies ending this paper with a brief discus-
sion. For more, see [7, Section 3].

The theory of metric entropy assigns to a measure-preserving transforma-
tion T of a probability space (X, 1) a non-zero number, the entropy h,(T)
of T. We briefly reprise the definition, which, of course, is rather little use
without motivation. If P is a partition of the probability space (X, i), the
entropy of P is defined as hy,(P) := > gep —p(S) log pu(S). We define the
entropy of T as:

(19) h,(T) = sup lim hy(PVT='P v -y T-(=1)p)

p m—00 n

where the supremum is taken over all finite partitions of X.

Roughly speaking, this means the following. Suppose for simplicity that
there exists a finite partition P attaining the supremum on the right-hand
side of (19). The entropy measures, in a suitable average sense, the amount
of extra information required to specify which part x € X belongs to, given



THE LITTLEWOOD CONJECTURE 17

that one knows which part T, T2z, T3z, ... belong to. One bit of informa-
tion corresponds to entropy log 2.

(Clearly the above is not a complete description, because, besides being
very ill-defined, it made no mention of the measure p!)

For example, if X = R/Z,T(x) = 2z, P = {[0,1/2),[1/2,1)}, the knowl-
edge of T*x specifies the (k -+ 1)st binary digit of z. So it requires one extra
bit to specify @ given {T'z, Tz, ..., }, which corresponds to entropy = log 2

On the other hand, if X = R/Z,T(z) = = + v2,P = {[0,1/2),[1/2,1)},
the entropy is 0: if we know the first binary digit of {Tz, T%z,...}, we also
know the first binary digit of z.

Thus, to a very crude approximation, positive entropy arises from the pos-
sibility of different x, ' € X having “similar” forward trajectories {Tz, %, T%s,.. }.
But, in the context of (A, L) there is a simple reason this could happen:
if z = n;jz’ and a € A, contracts n;; (cf. discussion near (13)), then the
points a*z, a¥z’ become very close as k — oo.

Formalizing this reasoning gives:

5.3. Theorem. Let p be an As-invariant probability measure on L3. Then
hy(a) =0 for all a € A3 if and only if, for almost all x € L3, the conditional

i .
measures ,uz] are trivial.

Thus Theorem 4.3 and Theorem 5.2 are indeed the same.
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FROM HARMONIC ANALYSIS TO ARITHMETIC COMBINATORICS

IZABELLA LABA

ABSTRACT. We will describe a certain line of research connecting classical
harmonic analysis to PDE regularity estimates, an old question in Euclidean
geometry, a variety of deep combinatorial problems, recent advances in an-
alytic number theory, and more.

Traditionally, restriction theory is a part of classical Fourier analysis that
investigates the relationship between geometric and Fourier-analytic prop-
erties of singular measures. It became clear over the years that the theory
would have to involve sophisticated geometric and combinatorial input. Two
particularly important turning points were Fefferman’s work in the 1970s in-
voking the "Kakeya problem" in this context, and Bourgain’s application of
Gowers’s additive number theory techniques to the Kakeya problem almost
30 years later.

All this led harmonic analysts to explore areas previously foreign to
them, such as combinatorial geometry, graph theory, and additive number
theory. Although the Kakeya and restriction problems remain stubbornly
open, the exchange of knowledge and ideas has led to breathtaking progress
in other directions, including the Green-Tao theorem on arithmetic pro-
gressions in the primes. The level of interest in the subject has skyrocketed
since then, and many exciting developments are sure to follow.

PROLOGUE

In April 2004, the mathematical world was jolted wide awake as Ben Green
and Terence Tao announced their proof of the long-standing conjecture
that primes contain arbitrarily long arithmetic progressions. Theirs was a
stunning piece of work, not only in its originality and ingenuity, but also
in the breadth of mathematical territory that it covered. The proof blended
seamlessly a multitude of ideas from number theory, combinatorics, har-
monic analysis and ergodic theory. The subsequent Green-Tao papers made
it clear that their breakthrough result was only the first step in a far-reaching
program of research, inspired by the Hardy-Littlewood conjecture in analytic
number theory.

To say that many were taken by surprise would be an understatement.
Green had just completed his Ph.D. degree less than a year earlier, and Tao
was already known as an brilliant mathematician but he had never worked in
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analytic number theory until then. While they had been aware of each other’s
work much earlier, they did not meet and start to collaborate until early 2004.
Their primes paper was then completed within just a few months.

This work, however, was not simply conjured out of thin air. It was built up-
on decades of research by many excellent mathematicians, working in rather
diverse fields and not always concerned with any sort of arithmetic progres-
sions. It then drew on the ideas and experience of the earlier contributors
to this area, including Szeméredi, Furstenberg, Bourgain, Gowers, and oth-
ers. Green and Tao studied their work in depth, molded and rearranged it,
long before they embarked on a collaboration. They did truly stand on the
shoulders of giants.

The ergodic-theoretic background of the Green-Tao work was surveyed in
BrynaKra’s 2005 Current Events Bulletin talk and in the article [44]. Here we
will focus mostly on harmonic analysis, but with some combinatorics and ad-
ditive number theory also mixed in. It is far from my intentions to suggest
that the work described here is merely a background for the Green-Tao theo-
rem. On the contrary, the questions mentioned here and the areas of research
that they represent are fascinating in their own right, and they still would be
if Green and Tao had never met.

To keep this presentation reasonably short and coherent, I will limit it to
a few problems in each area, selected with a view to showcasing the often
unexpected paths between them. Even so, the list of references has repeated-
ly threatened to run out of control. I hope to expand this to a longer article
in the future; meanwhile, I can only invite the reader to enjoy the story and,
should he wish to learn more, refer him to the more thorough and specialized
surveys cited in the text.

1. THE KAKEYA PROBLEM

1.1. Life during wartime. By all accounts, Abram Samoilovitch Besicovitch
(1891-1970) had an interesting life. He was born in 1891 in Berdyansk, in the
south of Russia. Having demonstrated exceptional mathematical abilities at
anearly age, he went on to studyunder the direction of the famous probabilist
A.A. Markov at the University of St. Petersburg, from which he graduated in
1912.

The University of Perm was established in October 1916, first as a branch
of the University of St. Petersburg and then as an independent institution.
Perm, located in the Ural Mountains, was closed off to foreign visitors from
the 1920s until 1989, and the university, which remains the main intellec-
tual center of the region, has seen difficult times. But in the hopeful early
years (1916-1922), it managed to attract many brilliant and ambitious young
academics. Besicovitch was appointed professor of mathematics at the
University of Perm in 1917. Among his colleagues were the mathematician
I.M. Vinogradov, of the three-primes theorem in analytic number theory, and



the physicist A.A. Friedmann, best known for his mathematical models of the
“big bang" and the expanding universe.

After several months of political unrest, the Bolshevik Revolution erupted
in October 1917. Soon thereafter a civil war engulfed Russia. The White Army,
led by former Tsarist officers, opposed the communist Red Army. Perm was
controlled by the Red Army until December 1918, when the White Army took
over.In August 1919 the Red Army returned. According to Friedmann, all the
staff except Besicovitch left the university:

The only person who kept his head and saved the remaining property
was Besicovitch, who is apparently A.A. Markov'’s disciple not only in
mathematics but also with regard to resolute, precise definite actions.

In 1920 Besicovitch returned to St. Petersburg, which had been renamed
Petrograd six years earlier, and accepted a position at Petrograd Universi-
ty. (Petrograd would change names twice more: it became Leningrad after
Lenin’s death in 1924, and in 1991 it reverted to its original name St. Peters-
burg.) The war years had not been kind to Petrograd. The city lost its capital
status to Moscow in 1918, the population dwindled to a third of its former
size, and the economy was in tatters. This is how Encyclopedia Britannica
describes the education reform in the newborn Soviet Union:

To destroy what they considered the “elitist” character of Russia’s ed-
ucational system, the communists carried out revolutionary changes
in its structure and curriculum. All schools,from the lowest to the high-
est, were nationalized and placed in charge of the Commissariat of
Enlightenment. Teachers lost the authority to enforce discipline in the
classroom. Open admission to institutions of higher learning was intro-
duced to assure that anyone who desired, regardless of qualifications,
could enroll. Tenure for university professors was abolished, and the
universities lost their traditional right of self-government.

Besicovitch was awarded a Rockefeller Fellowship in 1924, but was denied
permission to leave Russia. He escaped illegally, along with his colleague
J.D. Tamarkin, and took up his fellowship in Copenhagen, working with
Harald Bohr. After a brief stay in Liverpool (1926-27), he finally settled down
in Cambridge, where he spent the rest of his life. >From 1950 until his re-
tirement in 1958, he was the Rouse Ball Professor of Mathematics; this is the
same chair that was held by John Littlewood prior to Besicovitch’s tenure,
and is currently being held by W.T. Gowers, whose work will play a major part
laterin this story.

Besicovitch will be remembered for his contributions in the theory of al-
most periodic functions (a subject to which Bohr introduced him in Copen-
hagen) and other areas of function theory, and especially for his pioneering
work in geometric measure theory, where he established many of the funda-
mental results. He was a powerful problem solver who combined amastery of
weaving long and intricate arguments with a capacity to approach a question
from completely unexpected angles. His solution of the Kakeya problem, to
which we are about to turn, is a prime example of his ingenuity.



1.2. Riemannintegrals and rotating needles. Sometime during his Perm pe-
riod, between the comings and goings of the Red and White Armies, Besicov-
itch worked on a problem in Riemann integration:

Given a Riemann-integrable function f on R?, must there exist a rectan-
gular coordinate system (x,y) such that f (x,y) is Riemann-integrable
as a function of x for eachy, and that the two-dimensional integral of f is
equalto the iterated integral [ | f (x,y)dxdy?

He observed that to answer the question in the negative it would suffice
to construct a set of zero Lebesgue measure in R? containing a line segment
in every direction. Specifically, suppose that E is such a set, and fix a coordi-
nate system in R?. Let f be the function such that f(x,y) = 1if (x,y) € E
and if at least one of x, y is rational, and f(x,y) = 0 otherwise. We may al-
so assume, shifting E if necessary, that the x- and y-coordinates of the line
segments parallel to the y- and x-axes, respectively, are irrational. Then for
every direction in R?, there is atleast one line segment in that direction along
which f is not Riemann-integrable as a function of one variable. However, f is
Riemann-integrable in two dimensions, as the set of its points of discontinu-
ity has planar measure 0.

Besicovitch then proceeded to construct the requisite set E. This, along
with the solution of the Riemann integration problem, was published in a
Perm scientific journal in 1919 [2]. I wonder if any copies of that article have
survived!

The constructionis roughly as follows. We start with a triangle ABC, which
contains line segments in all directions from AB to AC. We divide itinto many
long and this triangles with one vertex at A and the other two on the base line
segment BC, thenrearrange them by sliding them along the base. This can be
done so that the rearranged set has area less than any small constant fixed
in advance. Iterating the construction and then taking the limit, we obtain a
set of measure 0. The details of the construction can be found in many books
and articles, for example [18], [54], [67]. There have been many subsequent
improvements and simplifications of Besicovitch’s construction, by Perron,
Schoenberg, and many other authors including Besicovitch himself.

Independently but around the same time (1917), the Japanese mathemati-
cian Soichi Kakeya proposed a similar question which became known as the
Kakeya needle problem:

What is the smallest area of a planar region within which a unit line
segment (a “needle") can be rotated continuously through 180 degrees,
returning to its original position but with reversed orientation?

Kakeya [39] and Fujiwara-Kakeya [23] conjectured that the smallest con-
vex planar set with this property was the equilateral triangle of height 1, and
mentioned that one could do betterif the convexity assumption was dropped.
For example, the region bounded by a three-cusped hypocycloid inscribed
in a circle of diameter 1 has the required property and has area 17/8 =~ .39,
whereas the area of the triangle is +/3/3 ~ 0.58. Kakeya’s conjecture for the



convex case was soon confirmed by Julius Pal (1921), but the more interesting
non-convex problem remained open.

Due to the civil war, there was hardly any scientific communication be-
tween Russia and the Western world at the time. Both Besicovitch and Kakeya
were unaware of each other’s work. Besicovitch learned of Kakeya’s problem
after heleft Russia, possibly froma 1925 book by G.D. Birkhoff which he men-
tions in [4], and realized that a modification of his earlier construction pro-
vided the unexpected answer:

For any e > 0, there is a planar region of area less then € within which a
needle can be rotated through 180 degrees.

His solution was published in 1928 [3]. There are now many other such
constructions, some with additional conditions on the planar region in ques-
tion.

1.3. The Kakeya conjecture.

Definition 1.1. A Kakeya set, or a Besicovitch set, is a subset of R? which
contains a unit line segment in each direction.

Besicovitch’s construction shows that Kakeya sets in dimension 2 can have
measure 0. With this information, it is easy to see that the same is true in
higher dimensions: let E be a planar Kakeya set of measure 0, then the set
E x [0,1]9-2 in R¥ is aKakeya set and has d-dimensional measure 0.

The following conjecture, however, remains open for all d > 3:

Conjecture 1.2. A Kakeya setin R4 must have Hausdor{f dimensiond.

In dimension 2, this was first proved by Davies [16] in 1971; an important
alternative argument was given later by Cordoba [14].

The current interest in the Kakeya conjecture is largely motivated by
problems in harmonic analysis. Analysts quickly realized that Besicovitch’s
construction of Kakeya sets of measure zero, along with a closely related
construction due to Nikodym (1927), could be used to produce counterintu-
itive examples involving maximal functions and differentiation of integrals
(see e.g. [11]). However, it was not until the 1970s and 80s that substantial
qualitative differences between the planar and higher-dimensional cases
were brought to light, and it gradually became understood that Conjecture
1.2 (along with its stronger maximal function variant) is the key question to
consider. This will be discussed in more detail in the next section, after which
we will return to the Kakeya conjecture and the progress that has been made
so far.

2. QUESTIONS IN HARMONIC ANALYSIS

2.1. The restriction problem. The Fourier transform of a function f : R4 —
Cis defined by

F(&) = Jf(X)e‘z""*'gdx.



This maps the Schwartz space of functions S to itself, and is clearly a bound-
ed operator from L'(R9) to L= (R?). A basic result in harmonic analysis is
that the Fourier transform extends to anisometry on L2 (R9); furthermore, by
the Hausdorff-Young inequality the Fourier transform is also bounded from
LP(RY) to L7 (R if 1 < p <2and , + ; = 1.
The following question has become known as the restriction problem:
Let u be a non-zero measure on R4. For what values of p’, q’ does the
Fourier transform, defined on S, extend to a bounded operator from
L9 (RY) to L¥' (du) ? In other words, when do we have an estimate

2.1) 1F e @y < ClIF lya' gays £ € S?

We will usually assume that the measure p is finite. Here and below, C and
other constants may depend on the dimension d, the measure u, and the ex-
ponents p, g, but not on f except where explicitly indicated otherwise.

In the classical version of the problem, u is the Lebesgue measure on a
d — 1-dimensional hypersurfaceI'in R4, e.g. a sphere or cone. Then the above
question can be rephrased in terms of restricting the Fourier transform of
an L9 function f to the hypersurface. This is trivial if g’ = 1, since then f is
continuous and bounded everywhere, in particular on I'. On the other hand,
it is easy to see that no such result is possible if g’ = 2. This is because the
Fourier transform maps L? onto L?, so that we are not able to say anything
about the behaviour of f on a set of measure 0. It is less clear what happens
for g’ € (1, 2). Asit turns out, the answer here depends on the geometry of I':
for example, there can be no estimates such as (2.1) with g’ > 1ifI'is ahyper-
plane, but we do have nontrivial restriction estimates for a variety of curved
hypersurfaces, some of which will be discussed shortly.

The reason for the somewhat curious notation so far is that we reserved
the exponents p, g for the dual formulation of the problem. We will write

FAu(E) = [ f(x)e2mixEdpu(x).
Let u be a non-zero measure on R4. For what values of p.q do we have an
estimate

(2.2) Ifdpllama) < Clfllp g, £ € S?

A reasonably simple argument shows that (2.2) and (2.1) are equivalent if
p,p’ and q,q’ are pairs of dual exponents: % + % = % + i = 1. While the
restriction problem took its name from the first formulation (2.1), the second
one turns out to be much more useful in applications.

In the case when p is the surface measure on a hypersurface I' with non-
vanishing Gaussian curvature, classical stationary phase estimates (e.g. [36])
yield asymptotic expressions for ﬁd\u (&) if f is a smooth compactly support-
ed function onT. In particular, we then have

2.3) fdu(E)| = 01 +1E)7),
and it follows that f/c.iﬂ € LI1(R4) for g > dzfd]. A wide variety of similar esti-

mates has been obtained under weaker assumptions on the curvature of T', for



example “finite type" surfaces and surfaces with less than d — 1 nonvanishing
principal curvatures are allowed. A comprehensive survey of suchwork up to
1993 is givenin [54] (see also [37]).

The point of the restriction estimates is that we no longer expect our func-
tions to be smooth, and that our estimates are intended to be uniform in L4
norms, regardless of the smoothness of the data. This is particularly useful in
applications to PDE questions. Much as stationary phase estimates are ubig-
uitous in traditional linear PDE theory, restriction estimates can be used to
prove regularity estimates if we only know that the initial data is in some L?
space and expect L7 or mixed-norm regularity, rather than smoothness, of
the solution. For example, restriction estimates are very closely related to
Strichartz estimates [55]. We will not attempt to survey this rich and com-
plex area here, instead referring the reader to references such as e.g. [52],
[54], [62], [58], [71]. The same references elaborate on many other problems
in harmonic analysis, involving oscillatory integrals, maximal functions, av-
eraging operators and Fourier integral operators, which bear close relations
torestriction estimates as well as to one another.

2.2. Restriction for the sphere and arrangements of needles. We will now
take a closer look at the restriction phenomenon for the sphere $9-! in R4,
Let o be the normalized surface measure on S9-1. The following conjecture
is due to Elias M. Stein:

Conjecture 2.1. Forallf € L*(59°1), we have
(2.4) Ifdo(&)llg < Cliflle, g > i1

Thisisknown ford = 2 (due to Fefferman and Stein[19]), but remains open
forall d > 2. The range of g is suggested by stationary phase formulas such
as (2.3). Plugging in f = 1 shows that this range cannot be improved. Indeed,
do canbe computed explicitly:

a5 (8) = 2081~ cos(am(lg] - T 1) + 0(E ),

which belongs to L9(R?) only for g exactly as indicated above.
If instead of assuming that f € L* we make the weaker assumption that
f € L2(S9-1), then the best possible resultis known [64], [65], [53]:

Theorem 2.2. (Tomas-Stein)Letf € L?(S9°1), then

2.5) IFAT ()1l = Clf i, 4 2 2.

This was first proved by Stein in 1967 (unpublished) for a smaller range
of g.In 1975 P.A. Tomas extended the result to g < 2;1;12’ and later that year
the endpoint was settled by Stein. A simple construction known as the Knapp
counterexample shows that the range of g in Theorem 2.2 is optimal.

The Tomas-Stein argument is very general and uses only limited informa-

tion about the geometry of S9-!, namely its dimensionality and the decay of




O atinfinity. Large parts of the proof can be adapted to different or more gen-
eral settings; in fact, later on we will see a very similar argument applied to a
number-theoretic problem.

One caninterpolate between Tomas-Stein and the trivial L'-L> estimate to
getarange of intermediate estimates. Going beyond that, however, was much
more difficult, and for many years, until Bourgain’s breakthroughin 1991 [7],
itwas not even known whether this was possible at all. It turns out that a sub-
stantially new approach was required. While Theorem 2.2 is mostly based on
analytic considerations, restriction estimates such as (2.2) with p > 2 require
deeper geometrical information, and this is where we discover Kakeya sets
lurking under the surface.

Our starting point is that the restriction conjecture (2.4) implies the
Kakeya conjecture (Conjecture 1.2). This was perhaps first stated and proved
formally by Bourgain in [7], but very similar arguments were used in the
harmonic analysis literature throughout the 1970s and 80s, all inspired by
the work of Fefferman [20] where Besicovitch sets were used to produce a
counterexample to the (closely related) ball multiplier conjecture. Below is a
rough summary of this argument, adapted to the restriction setting.

Letf(x) = e2™n*x.(x),wheren € R?, a € S9!, and x, is the characteristic
function of the spherical cap centered at a of radius 6 for some very small
6 > 0. Scaling considerations, standard in harmonic analysis, show that f
is roughly constant on tubes of length 62 and radius §~!. Forgetting about
mathematical rigour for a moment, we will in fact think of f as the character-
istic function of one such tube. Moreover, by adjusting the phase factor n we
can place that tube at any desired point in the dual space [Rg.

Now cover the sphere by such §-caps, and let F(x) be the sum of the asso-
ciated functions defined above. Then ||F||, < C,uniformlyin §. On the other
hand, F is the sum of a large number of characteristic functions of tubes as
described above. If we now arrange these tubes as in the Besicovitch set con-
struction, then the size of the support of F will be very small compared to its
L' norm, and an application of Holder’s inequality shows that this forces the
L? norms of F to be large. This can be worked out quantitatively, taking into
account the many technicalities that we conveniently brushed off here, and
the result follows.

The truly groundbreaking contribution of [7] was the discovery that
this reasoning was, to some extent, reversible. More precisely, Bourgain
developed an analytic machinery to deduce restriction estimates from
Kakeya-type geometric information. It is a difficult and analytically sophis-
ticated argument. First of all, it does not quite suffice to have a dimension
bound for Kakeya sets in RY - a stronger result expressed in terms of max-
imal functions is needed. This is followed by simultaneous analysis on two
different scales (local restriction estimates), combining the maximal func-
tion result just mentioned with Tomas-Stein type orthogonality arguments.
The numerology produced here is complicated and unclear, and there is no



simple way to explain where the resulting values of the exponents p come
from.

Bourgain’s work was continued by other authors: Wolff (1995), Moyua-
Vargas-Vega (1996), Tao-Vargas-Vega (1998), Tao-Vargas (2000), Tao (2003).
While Wolff improved on Bourgain’s result by producing a better Kakeya
bound, other authors tended to focus on the Kakeya-to-restriction con-
version mechanism. It should be added, though, that Wolff has also made
indirect but crucial contributions of the second kind, as the analytic tools
developed by him in other related contexts were then used by other authors
(notably Tao) to make progress here. The updated toolbox includes bilinear
restriction estimates, induction on scales, wave packet decompositions,
local restriction estimates, and more. A comprehensive review of the modern
approach to the subjectis given in [59].

The current best result belongs to Tao [58], and can be explained as fol-
lows. Interpolating between the Stein-Tomas theorem (2.5) and the conjec-
tured estimate (2.4), we get a family of conjectured intermediate estimates
of the form (2.2). The challenge is to improve the range of p for which such
estimates are known. Tao’s resultis that (2.2) holds with p > @ if g is the
corresponding exponent from the interpolation. This is obtained as a conse-
quence (via scaling) of a bilinear restriction estimate for paraboloids, proved
also in [58] and largely inspired by Wolff’s sharp bilinear restriction estimate
for the light cone [69].

3. THE KAKEYA PROBLEM REVISITED

We now return to the Kakeya conjecture in dimensions d > 3. Although the
conjecture remains open, partial results are available in the form of lower
bounds on the Hausdorff dimension of Besicovitch sets in R4, and it is this
question that will concern us in this section.

In addition to the Hausdorff dimension, we will also consider the related
but somewhat different notion of Minkowski dimension, defined as follows.
For a compact set E C R4, we let E5 be the 6-neighbourhood of E, and consid-
er the asymptotic behaviour of the d-dimensional volume of Es as 6 — 0. We
say that E has Minkowski dimension « if the limit

(3.1 %19310%5 |Es5|

exists and is equal to n — «; in other words, if we have |E5| =~ 69~ If the lim-
itin (3.1) does not exist, we instead use the lower and upper limit in (3.1) to
define the upper and lower Minkowski dimension, denoted by dim,, (E) and
dim,, (E). We also use dimg (E) to denote the Hausdorff dimension of E.

For all compact sets E ¢ R? we have dimy (F) < dim,,(E) < dimy(E), so
that any lower bound on the Hausdorff dimension of Kakeya sets implies the
same bound on the Minkowski dimension. However, the converse does not
hold, and there are several results concerning the Minkowski dimension of
Kakeya sets that so far have not been replicated for the Hausdorff dimension.



The Minkowski dimension has many disadvantages compared to the Haus-
dorff dimension, for example it is not associated with any countably additive
measure and there are countable sets that have positive Minkowski dimen-
sion. However, its use will allow us to simplify considerably the exposition
while retaining the essence of the proofs. In the sequel we will therefore fo-
cus on Minkowski dimension arguments even where Hausdorff versions are
also available.

Prior to 1991, it was known that the Hausdorff dimension of a Kakeya set
in R must be at least (d + 1)/2.1was not able to determine where this first
appeared explicitly, but it certainly follows from the x-ray and k-plane trans-
form estimates of Drury [17] and Christ [13]. Bourgain’s work [7] started a
race to improve the known Kakeya bounds. In the next two subsections we
give an account of the developments so far and sketch a few key arguments.
A summary of the best known bounds at this time is given at the end of the
section.

3.1. Geometric arguments. We begin with an argument due to Bourgain [7],
known in the harmonic analysis community as the “bush argument", which
provides a geometric proof of the previously mentioned bound (d + 1)/2.
Suppose that F is a Kakeya set in R4, then for each e € S9! E contains a
unit line segment T¢ in the direction of e. Let £ be a maximal §-separated
subset of $9-1, so that |E| ~ 6~V and let T¢ be the §-neighbourhood of
T¢. Abusing notation only very slightly, we write Es = U,z Ts. Suppose that
dimy (E) = &, sothat |Es| = 6" ®.Since > ,cz | T5| = 1, there must be at least
one point, say xq, which belongs to at least §~"~® tubes T¢. The key obser-
vation is that these tubes are essentially disjoint (more precisely, have finite
overlap) away from a small neighbourhood of x,. (Two straight lines can only
intersect at one point.) Thus |Es| is bounded from below by a constant times
the sum of volumes of the tubes through x,:

|Es| = Cc§d-x , gd-1 _ sa-1

But thisis only possibleif x — 1 < d — o, i.e. x < d#

In [7], this is supplemented by an additional geometrical argument im-

proving the dimensionbound to drl €4, with €, given by arecursive formula

(for d = 3 this yields the bound 7/23).

Amore efficient geometrical argument, leading to the estimate dimy (E) >
dzﬁ, was given a few years later by Tom Wolff [67]. Wolff observes thatin order
for Es to have small volume, it is necessary for a large fraction of the set, not
just one point, to have high multiplicity. In fact, many of the tubes Ty must
consist largely of high multiplicity points. Take one such tube, along with the
union of all tubes that intersect it (this object is often called “hairbrush"). By
combining Bourgain’s “bush" construction above with an earlier planar esti-
mate due to Cordoba [14], one can prove that the bristles of the hairbrush
must be essentially disjoint. We then bound the volume of Es from below by
the volume of the hairbrush, and the Minkowski dimension estimate again

follows upon taking 6 — 0.
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This comes with afew caveats. The argument does not quite work as stated
and requires some modifications if the tubes of Es tend to intersect at very
low angles. More importantly, there are additional issues that arise in the
calculation of the Hausdorff dimension (as opposed to Minkowski). We will
not elaborate on this here, but we do want to mention the two ends reduction
of [67], which was introduced to resolve that problem and may well have
inspired some of the induction on scales techniques inrestriction theory.

Wolff’s argument, although more elaborate than Bourgain’s, is still rela-
tively simple in the sense that only very basic geometric information is being
used, and it was tempting to try to improve on it by using more sophisticat-
ed combinatorial methods. This is how harmonic analysts were introduced
to combinatorial geometry, an area of combinatorics which studies, among
other things, arrangements of lines, planes and other geometric objects in
Euclidean space. Of particular interest here are combinatorial bounds on the
number of incidencesbetween points and objects such as lines, curves or sur-
faces. (A curve is incident to a point if the point lies on the curve.) A classic
result of this type is the Szemerédi-Trotter theorem giving a bound O(n +
m + n?/3m?/3) on the number of incidences between n lines and m points in
RZ2; we invite the reader to consult the review article [47] for an overview of
this fascinating subject and many more examples of estimates of this type.

The use of incidence geometry in harmonic analysis - essentially, decom-
posing functions into “wave packets", then treating the latter as thin geomet-
ricobjects and applying combinatorial methods to deduce information about
their possible arrangements - was pioneered by Wolff in the 1990s. While
the Kakeya problem resisted this approach, Wolff was much more success-
ful with other questions, for example the local smoothing problem for the
wave equation whose solution [70] required obtaining deep geometric infor-
mation about arrangements of circles. Just as importantly, ongoing commu-
nication was gradually established between discrete geometers and harmon-
ic analysts. Many more intriguing connections between the two areas have
since been uncovered and continue to be pursued.

3.2. Additive and hybrid arguments. A radically different “arithmetic" ap-
proach to the problem was introduced by Bourgain in 1998 [10]. Let us forget
about the hairbrush construction for a moment, and try to improve on the
bush argument instead in another direction. Suppose that we are given a hy-
pothetical Kakeya set E ¢ R4 of dimension close to (d + 1) /2. We perform a
discretization procedure as in the last subsection, except that we will now ig-
nore the distinction between a tube and a line. (This is cheating, butitis good
for the exposition.) We will also restrict our attention to those lines which
make an angle less than 1r/100 with the x;-axis. Consider the intersections
A, B, C of the discretized set E with the three parallel hyperplanes x; = 0,
xqg = 1,x5 = 1/2 (rescale and translate the set if necessary). We consider
A, B, C assubsetsof R-1.LetS = {(a,b) :thereisaline froma tob}. Then

{ta+b)/2: (a,b) €S} CC.
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The key result is the following lemma.

Lemma3.1. Let A, B be two subsets of 7% of cardinality < n, andletS ¢ A x B.
Iflffa+b: (a,b) € S}| < Cn, then

l{a—b: (a,b) € S}| < C'n> 1.

We will say more about Lemma 3.1 later on, but first we will see how it ap-
plies to our setting. Due to multiplicity considerations similar to those in the
last subsection, we have |A|, |B|, |C| < nwith n close to 6~ @~1/2, The lemma
thenstatesthat |[{a — b : (a,b) € S}| < cn?"1/13_ But the last set includes the
set of “all" directions, hence it must have cardinality about 6“1, which is
greater than the lemma allows if n is too close to §~@-1)/2,

Bourgain worked out a quantitative version of this in [10], obtaining a low-
er bound (13d + 12)/25 for the dimension of the Kakeya sets in R4, which
is better than Wolff’s result in high dimensions. The Minkowski dimension
argument is more or less as described above, but the Hausdorff and maximal
function version present many additional difficulties in arranging a setup in
which the lemma can be applied, and one cannot help but admire Bourgain’s
ingenuity in overcoming this.

The bounds in [10] have since been improved in various ways. The arith-
metic approach was developed further by Katz and Tao [41], [42], first by im-
proving the bound in Bourgain’s lemma and then by using more than three
“slices". There are also hybrid arguments [40], [42], combining Wolff’s geo-
metric combinatorics with Bourgain’s arithmetic method. We embarked on
the work [40]. in two separate groups, with the expectations that Wolff’s hair-
brush estimate could be improved by more sophisticated geometrical argu-
ments... but we found that this was just not going to happen, at least not in
three dimensions. Our collection of geometrical observations (many of which
were due to Tom Wolff or inspired by him) was growing, but it still did not add
up to an improved bound. That was only achieved when we turned to Bour-
gain’s approach, first using geometrical techniques to effectively factor out
one dimension. (On the other hand, a similar result in higher dimensions [45]
involves only geometry and no additive techniques.)

Finally, we present the somewhat complicated list of the current best
lower bounds on the dimension of Besicovitch sets in R4, We start with the
Minkowski results:

e d=13:5/2+1071°(Katz-Laba-Tao 1999)
e d=4:3+10-10 (*aba-Tao 2000)
e 4<d<?24:(2-21/2)(d—-4) + 3 (Katz-Tao 2001)
e d=>24:(d+t—-1)/t,wheret = 1.67513...istherootof t? — 4t + 2 =
0 thatlies between 1 and 2 (Katz-Tao 2001).
The Hausdorfflistis shorter:

o d=3,4:(d + 2)/2 (Wolff 1994)
e d>4:(2-21/2)(d -4) + 3 (Katz-Tao 2001)

12



The reader may have forgotten by now that we still have not said anything
about Bourgain’s lemma. We will do that now, and this will take us into the
very different realm of additive number theory. Lemma 3.1 is actually amod-
ification of aresult of Gowers [26], [27] which in turn is a quantitative version
of a result known as the Balog-Szemerédi theorem. We will explain this in
more detail in the next section.

This is a good moment to say that it was the connection between these
questions and the Kakeya conjecture, via Lemma 3.1 and Bourgain’s work in
[10], that attracted many harmonic analysts to additive number theory and
inspired us to work on its problems. The Green-Tao theorem and many other
developments might have never happened, were itnot for Bourgain’s brilliant
leap of thoughtin 1998.

4. ADDITIVE NUMBER THEORY

Additive number theory is a mixture of number theory, combinatorics, and
discrete harmonic analysis, applied in various proportions to problems con-
cerning additive properties of sets of numbers. The questions of interest are
often stated in the language of first-grade arithmetic: addition, multiplica-
tion, and counting of integers. Yet, starting with those most basic ingredi-
ents, one weaves a surprisingly rich tapestry of techniques and results. We
are actually interested in a certain subfield of additive number theory that
can be hard to define, but is often thought to be closer to combinatorics than
to the rest of number theory. Below we describe two results that are central
to, and representative of, this field: Freiman’s theorem and Szemerédi’s the-
orem. There are excellent expositions and surveys of the area, for example
[15],[28] or [63], where the interested reader will find more information.

4.1. Freiman’s theorem. Let A C Z be a finite set,andlet A + A = {a + b :
a,b € A}.Itis easy to prove that |A + A| > 2|A| — 1, and that the equality
is attained if and only if A is an arithmetic progression. But what if we only
know that |[A + A| < C|A| for some (possibly large) constant C? Does this im-
ply that A has arithmetic structure? Of course arithmetic progressions still
qualify, but so do more general lattice-like sets of the form

4.1) A= {a()+j1r1+ "'+jml’m: OSjiSJi,iZ 1,...,m},

with m small enough depending on C. Such sets are called generalized arith-
metic progressions of dimension m. Freiman’s theorem [21], [22] asserts that
all sets with small sumsets are essentially of this form:

Theorem 4.1. Suppose that A C Z and that |A + A| < C|A|. Then A is con-
tained in a generalized arithmetic progression (4.1) of size at most C'|A| and
dimension m, where C' and m depend only on C.

Following Freiman’s work, there have been several other proofs of Theo-
rem 4.1, by Bilu [6], Ruzsa [49], [50], [51], and Chang [12], where the current
best quantitative bounds were obtained.
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Freiman’s theorem has a variety of extensions and generalizations. It can
be extended to more general abelian groups - the most general result of this
type was recently obtained by Green and Ruzsa. In a different direction, the
Balog-Szemerédi theorem [1] addresses the case when we do not know the
size of the entire sumset A+ A, assuminginstead that theset {a+a’ : (a,a’) €
S} is small for a large set S C A X A. It was a quantitative version of this
theorem that was required in Gowers’s proof of Szemerédi’s theorem (to be
discussed in the next subsection), and then strengthened further by Bourgain
to produce Lemma 3.1 in the last section.

We recommend the book [46] for more information regarding Freiman’s
theorem and other inverse problems in additive number theory.

4.2. Szemerédi’s theorem. We will say that a set A ¢ N has upper density 6
if
= |AU[1,N]|
llrl'l]\]aoo T =0.
Motivated by van der Waerden’s theorem in Ramsey theory, Erdés and Turan
conjectured in 1936 that any set of integers A of positive upper density must
contain arithmetic progressions of length k for any k. This was indeed proved
byRoth [48] for k = 3, thenby Szemerédi[56], [57] for all k. Below is an equiv-
alent statement of this result:

Theorem 4.2. Forany § > 0 and any integer k there is a N (6, k) such that if
N > N(6,k) and A is a subset of {1, 2,...,N} of cardinality |A| = 6N, then A
must contain a non-trivial k-term arithmetic progression.

As of now, Szemerédi’s theorem has four remarkably distinct proofs,
each of which was a milestone in combinatorics in its own right. The original
combinatorial proof by Szemerédi [57], ingenious and complicated even
by Szemerédi’'s standards, featured the regularity lemma, which has since
become an invaluable tool in Ramsey theory. Furstenberg’s ergodic-theoretic
proof [24], based on the multiple recurrence theorem, has the advantage of
admitting a variety of extensions to more general problems of similar type,
for example the multidimensional Szemerédi theorem due to Furstenberg
and Katznelson [25], or the polynomial Szemerédi theorem of Bergelson and
Leibman [5]. Gowers’s proof [26], [27] is often referred to as “harmonic ana-
Iytic", more for its resemblance to Roth’s proof for k = 3 than for its actual
use of harmonic analysis. It yields the best available quantitative bounds, in
terns of the dependence of N (8, k) onk and 8, for k > 4 (but this is now being
challenged by Green and Tao for k = 4). Finally, there is a very recent hyper-
graph proof, due independently to Gowers and Nagle-Rodl-Schacht-Skokan
(2004).

All known proofs of Szemerédi’s theorem rely on a certain dichotomy
between randomness and structure. Roughly speaking, if the elements of A
were chosen from {1, ..., N} independently at random, each with probability
8, then with high probability there would be about §XN? k-term arithmetic
progressions in A, as there are about N? k-term arithmetic progressions in
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{1,...,N}, and each one is contained in A with probability 6%. The same is
true if A imitates a random set closely enough, in a sense that needs to be
made precise. On the other hand, a non-random set should have a certain
amount of additive structure, reminiscent of that in Freiman’s theorem but
much weaker. We then use that structure to our advantage, for example by
passing to a long arithmetic subprogression of {1,...,N} on which A has
higher density and then iterating the argument. The challenge is to find a no-
tion of randomness which is strong enough to guarantee existence of k-term
arithmetic progressions, but also weak enough so that its failure implies
useful structural properties.

We illustrate this by taking a brief look at Roth’s proof for k = 3. We will
identify {1,..., N} with the additive group Zy. The discrete Fourier transform
on Zy is defined by

N
f(E) =N D f(x)e s,
x=1
Let A(x) be the characteristic function of A. A short Fourier-analytic calcula-
tion shows that if A contains no non-trivial 3-term arithmetic progressions,
then thereisa & + 0 such that

(4.2) JA(E)| = 62.

In other words, a set whose Fourier coefficients A (&) are small enough be-
haves like a random set and contains 3-term arithmetic progressions. It re-
mains to consider the case when (4.2) holds for some & # 0. In this case, we
use (4.2) to prove that A cannot be uniformly distributed among long arith-
metic progressions of step r for some r “dual” to & (i.e. |€ - r| is small modulo
N). This allows us to choose a long subprogression of {1,..., N} on which A
has increased density, and then continue the inductive argument.

In Gowers’s proof for arbitrary k, randomness (or uniformity) of Ais deter-
mined by the size of the Gowers norms of its characteristic function. This is
equivalent to the above for k = 3, but more complicated for higher k. Again, if
A is uniform then it contains many k-term arithmetic progressions, but now
uniformity is a stronger notion and, unlike for k = 3, its failure does not im-
plylinear structure. Instead one must first find more complicated polynomial
patterns in A, then exploit them, eventually arriving again at a density incre-
ment on a subprogression. It is in this part of the proof that advanced tools
from additive number theory, such as the theorems of Freiman and Balog-
Szemerédi, become crucial.

While this offers a short glimpse at the outline of Roth’s and Gowers’s ar-
guments, we are not really able to do justice to any of this work here. More
specialized surveys, such as[61] or [63], offer abetterlook at Szemerédi’s the-
orem, its context in combinatorics and number theory, and the wide diversity
of techniques and ideas involved in its proofs.



5. THE GREEN-TAO THEOREM

5.1. Onceinalifetime. We finally turn to the k-term arithmetic progressions
in the primes. It has long been conjectured that such progressions should
exist for any k, for example this would follow from a much more general con-
jecture of Hardy and Littlewood in [35]. Van der Corput proved in 1939, by an
application of the circle method, that primes contain infinitely many 3-term
arithmetic progressions. The conjecture was settled by Green and Tao in [33]:

Theorem 5.1. Foranyk > 3, primes contain arithmetic progressions of length
k.

An earlier result is due to van der Corput, who proved in 1939 that primes
contain infinitely many 3-term arithmetic progressions. Ben Green extended
this in [29] to dense subsets of primes. Both proofs rely on the circle method,
aclassic Fourier-analytic technique in number theory.

By contrast, the Green-Tao proof employed ideas from all then-existing
proofs of Szemerédi’s theorem (combinatorics, ergodic theory, Fourier anal-
ysis), combined with further number-theoretic information. Their approach
was to embed the primes in a sufficiently random background set in which
they have positive density, then prove a “relative Szemerédi theorem" which
applies in this setting.

We begin with the latter part. Instead of sets A c {1,...,N} of positive
relative density, we consider functions fandvon {1,...,N} such that 0 <
f<vand>,f(x) = 6>,v(x).Heref is the target funcuon (later on it will
be supported on the prlmes), and v is the background function. We assume
v toberandom in the sense that it satisfies certain explicit correlation condi-
tions (not easy to reproduce here). A key point is that both f and v need not
be bounded uniformly in N. We wish to prove a Szemerédi theorem in this
setting; more precisely, we need to estimate from below the quantity

(5.1) Zf (X +P)fF(x+2r)...f(x+ (k—-1)r),

which counts the number of k — term arithmetic progressions in a set A if f
is the characteristic function of it. The proof of this proceeds roughly along
the lines of Furstenberg’s ergodic proof of Szemerédi’s theorem. An induc-
tive procedure is used to decompose f into random and quasiperiodic parts.
The contribution of the random part to the quantity (5.1) is negligible. On the
other hand, the “usual” Szemerédi theorem gives a bound from below on the
contribution of the quasiperiodic part, and the result follows.

We now have to find appropriate functions f and v. The reader should be
used by now to occasional cheating in this exposition, and we will do it again
here. Let f = A be the von Mangoldt function, i.e. A(n) = logp if n = p* and
0 otherwise. This is not quite supported on the primes, but it is close enough
and we can pretend that prime powers do not exist. We also define v to be a
“truncated” von Mangoldt function, supported on the almost primes (rough-
ly, numbers which do not have small divisors). Now we bless our good luck.
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An almost identical function had been considered earlier by Goldston and
Yildirim in their work on small gaps between prime numbers. In fact, they
had obtained correlation estimates on v that are very close to those we need
to establish the randomness of v. There is still some work to do, but much
of it has already been done for us. The work of Goldston and Yildirim was
first circulated in 2003, then a gap was found in the proof a few months later.
The main claims were withdrawn, but the preprints remained available and
they certainly turned out to be useful! Later on, Goldston and Yildirim, joined
by Pintz, fixed the proof and they now hold results on small gaps between
primes that far exceed anything previously known.

There are now many expositions and reviews of various aspects of the
Green-Tao work, see e.g. [31], [32], [44], [60], [61]. The focus of this note
will remain on connections to harmonic analysis, and thus we return to
restriction theory for the last time.

5.2. What goes around, comes around. Restriction estimates for finite ex-
ponential sums, as opposed to continuous Fourier transforms, were first de-
rived by Bourgain [9] in the context of proving Strichartz estimates for so-
lutions of evolution equations (such as Schrodinger and KdV) on the torus
T4, They were then revisited in 2003 by Green in [29], a paper that directly
inspired the work in [33].

We will try to explain the approach of [29] in the framework of the last sub-
section. Define f and v as before (again we will not quite make this precise).
Our goal is to prove lower bounds on (5.1) for k = 3. In this context, the ran-
domness of v simply means that v has small Fourier coefficients, as explained
earlier in connection with Roth’s theorem. Green, however, does not proceed
further along the same lines as [33]. Instead, his main tool is the restriction
estimate

(5.2) IFdvil, < Collfllz@v), p > 2.

This has exactly the same form as (2.2), if we interpret v as the density of
a probabilistic measure supported on the almost primes. Moreover, the
proof of (5.2) follows the Tomas-Stein argument very closely, from the in-
terpolation between endpoints down to such details as the use of dyadic
decompositions. Does this mean that the almost primes have curvature?
Or that they have a Hausdorff dimension? Some questions are perhaps best
dismissed without a hearing.

Although this type of Fourier analysisis not directly applicable to Szemerédi-
type problems for progressions of length 4 and more, it was reportedly a
major source of ideas for Green and Tao. They are currently working to
develop a “quadratic Fourier analysis" that could be applied to finding 4-term
progressions, or more generally solutions to systems of 2 linear equations,
in suitable sets such as the primes or their dense subsets. This is a rapidly
developing area and many more exciting developments are sure to follow.
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6. NOTES AND ACKNOWLEDGEMENTS

I am grateful to David Eisenbud and Susan Friedlander for inviting me to
speak in the Current Events Bulletin and encouraging me to write this survey.
This articleis also based in part on the expository talks I gave at the Canadian
Mathematical Society Winter 2004 meeting in Montreal, the MSRI workshop
“Women in Mathematics: the legacy of Ladyzhenskaya and Oleinik" in May
2006 (there is some overlap between this article and my extended abstract
in the workshop proceedings), and the American Mathematical Society 2006
Fall Western Section meeting in Salt Lake City.

I have relied on a variety of sources in preparing the manuscript. In addi-
tion to the many references cited in the text, I have also consulted the wonder-
ful Internet-based MacTutor History of Mathematics Archive, maintained at
the University of St. Andrews (http://www-history.mcs.st-andrews.ac.
uk/history). This is where some of the historical information in Sec-
tion 1, including the quote in Subsection 1.1, came from, though I also
found Kenneth Falconer’s historical comments in [18] to be informative and
reliable.

The Big Dipperimage on the booklet cover illustrates alayman’s version of
the multidimensional Szemerédi theorem: if the stars in the night sky shine
brightly enough so that sufficiently many can be seen, then any desired pat-
tern can be found among them. Mathematicians, for example Benjamin Weiss
and Terence Tao, have sometimes used this metaphor in their lectures. In the
film “A Beautiful Mind", there is a scene where the hero and his fiancée watch
thenight sky together. He asks her to pick a pattern. She chooses anumbrella.
He looks up for a few seconds. Then their joined hands trace the shape of an
umbrella between the stars.
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ABSTRACT. Itis wonderful to see the individual strengths of otherwise sep-
arate mathematical sub-disciplines coming together and connecting with
each other (in as startling a way as the theory of continental drift connects
the shape of disparate continents) and then providing for us the resolu-
tion of a long-sought conjecture. This is indeed what happened last Spring,
when a conjecture about certain important probability distributions in num-
ber theory, posed forty years ago by Mikio Sato and John Tate, was finally
verified for a large number of cases as the culmination of three major works:
o in the study of modular liftings and automorphic representation theory
(work of Laurent Clozel, Michael Harris, and Richard Taylor [1])
e in algebraic geometry and automorphic representations (work of
Michael Harris, Nicholas Shepherd-Barron, and Richard Taylor [3])
o in Galois deformation theory (work of Richard Taylor [12]).
the last-mentioned breakthrough establishing the result.
My aim is just to discuss, in concrete terms, two “sample problems" —
one still open, and one settled by the recent work—that are addressed by the
Sato-Tate Conjecture.
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1. ERROR TERMS AND THE SATO-TATE CONJECTURE

1.1. Why are there still unsolved problems in Number Theory? Eratos-
thenes, to take an example—or other ancient Greek mathematicians—might
have imagined that all they needed were a few powerful insights and then
everything about numbers would be as plain, say, as facts about triangles in
the setting of Euclid’s Elements of Geometry. If Eratosthenes had felt this,
and if he now—transported by some time machine—dropped in to visit us,
I'm sure he would be quite surprised to see what has developed.

Of course, geometry has evolved splendidly but has expanded to higher
realms and more profound structures. Nevertheless, there is hardly a ques-
tion that Euclid could pose with his vocabulary about triangles that we don’t
know the answer to today. And, in stark contrast, many of the basic naive
queries that Euclid or his contemporaries might have had about primes, per-
fect numbers, and the like, would still be open.

Sometimes, but not that often, innumber theory, we get acomplete answer
to a question we have posed, an answer that finishes the problem off. Often
something else happens: we—perhaps after some major effort—-manage to
find a fine, simple, good approximation to the data, or phenomena, that inter-
ests us, and then we discover that yet deeper questions lie hidden in the error
term—in the measure of how badly our approximation misses its mark.

A telling example of this, and of how in the error term lies richness, is the
manner in which we study of 17 (X) := the number of prime numbers less than
X. The function 1 (X) is shown below, in various ranges as step functions
giving the “staircase" of numbers of primes.

8 P(N)

1

5 10 15 20 25

Figure 1.1. The step function 77 (N) counts the number of
primesupto N
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Figure 1.2. The step function 11 (N) counts the number of
primesupto N

Asiswell known, Carl Friedrich Gauss, two centuries ago, computed tables
of 1 (X) by hand, for X up to the millions, and offered us a probabilistic “first”
guess for a nice smooth approximating curve for this data; a certain beauti-
ful curve that, experimentally, seems to be an exceptionally good fit for the
staircase of primes.

The data, as we clearly see, certainly cries out to us to guess a good approx-
imation. If you make believe that the chances that a number N is a prime is
inversely proportional to the number of digits of N you might well hit upon
Gauss’s guess, which produces indeed a very good fit. In a letter written in
1849 Gauss claimed that as early as 1792 or 1793 he had already observed
that the density of prime numbers over intervals of numbers of a given rough
magnitude X seemed to average 1/logX.

The Riemann Hypothesisis equivalent to saying that the integral fZX dx/logx
(i.e., the areaunder the graph of the function 1/ log x from 2 to X)is essentially
square root close to 1t (X). Essentially square root close by the way just means
that for any given exponent greater than 1/2 (you choose it: 0.501, 0.5001,
0.50001 for example) and for large enough X—the size, here, depending on
your choice of exponent—the difference between sz dx/logx and 1 (X) in
absolute value is less than X raised to that exponent (e.g. X%>%! etc.).

1.2. Much of the depth of the problem is hidden in the structure of the error
term. In a general context, once we make what we hope to be a good approx-
imation to some numerical data, we can focus our attention to the error term
that has thereby been created, namely:

Error term = Exact Value - Our “good approximation.”



In our attempt to understand 717 (x), i.e., the placement of primes in the
sequence of natural numbers, we might choose, with Gauss, our good approx-
imation to be f2X dx/logx. If so, then we will have focused our mind on the
error termwhich so that in this instance we have

X
Error(x) = m(x) — J dx/log x.
2

It is Riemann’s analysis of—what is in effect— this error term that first
showed us the immense world of structure packaged in it. For Riemann did
whatis, in effect, a Fourier analysis of 77 (e!) expressing Error(x) (or, more pre-
cisely,acloselyrelated function that has the same information as Error(x)) as
an exactinfinite sum of corrective terms, each of these corrective terms eas-
ily described in terms of the value of a zero of the Remann zeta function; all
of thelse corrective terms are square root small if and only if “his" hypothesis
holds".

Figure 1.3. The smooth function slithering up the stair-
caseof primesupto100is Riemann’s approximation that
uses the “first" 29 zeroes of the Riemann zeta function

LAll the data in figures appearing in this article have been tabulated by William Stein.



1.3. Strict square-root accuracy. We will be considering a somewhat differ-
ent class of number theoretic problem than the example that we have been
discussing, and for those an even stronger notion of square-root approxima-
tionisrelevant. We will be interested in situations where the error termisless
than a fixed constant times the square root of the quantity being approximat-
ed;let us say that an approximation to numerical data has strict square-root
accuracy if its error term has this property.

We have witnessed great successes in the last century in obtaining good
approximations to important problems in Number theory, with error terms
demonstrated to be strictly square-root accurate. Specifically, through the
work of Helmut Hasse in the 1930s, André Weil in the 1940s and Pierre
Deligne in the 1970s, a large class of major approximations were proved to
have this kind of accuracy.

1.4. Some Sample Arithmetic Problems. It has known since the time of Fer-
mat, and proved by Euler, that a prime p can be written as a sum of two square
numbers if and only if p#3 modulo 4 and if it can be written as a sum of two
squares, it can be done so in only one way (not counting the order of the two
squares). For example:

401 = 12 + 20°

is the only way (up to changing the order of the two summands) to express
the prime number 401 as a sum of two squares. This result is, for many rea-
sons, a much more central and important classical result than it may first
appear to be. The problem, which seems to mix prime numbers with geome-
try (squares of distances to the origin of integral lattice points in the plane)
has the virtue thatits answer is equivalent to knowledge of the splitting prop-
erties of primes, and the validity of the unique factorization theorem, in the
ring of gaussian integers.

In how many ways can the prime p be expressed as a sum of the squares of
three integers? The answer for p > 5 —due to Gauss—can be given in terms
of the function h(—d) the class number of the quadratic imaginary field of
discriminant —d. The number of ways that p > 5 be expressed as a sum of the
squares of three integersis:

e 12h(—4p)ifp = 1,5 modulo §;
e 24h(—p)if p = 3modulo §;
e 0if p = 7modulo 8.

The rules of the game here is that the ordering of the summands, and the
signs of the integers chosen, count in the tally so for p = 2wehave 2 = 02 +
(£1)% + (£1)? = (£1)?> + 02 + (x1)? = (£1)% + (%1)? + 0% and therefore we
have that 2 can be written “as a sum of three squares"in 3 - 2° = 12 ways.

These two problems are simply the first two of a series of companion ques-
tions that have along history,

In many ways can the prime p be expressed as a sum of the squares of v
integers?



To get some sample problems that drive home a pointIwant to make in this
exposition—and for no other reason—of I'll restrict consideration to certain
select values of r.

For r = 4 we have a simply stated, exact, solution: the prime p can be ex-
pressed as a sum of four squares in 8p + 8 ways.

For r = 8, any odd prime number p can be expressed as a sum of eight
squaresin 16p® + 16 ways.

In both of these cases the answer to our problem (at least for p > 2)is a
polynomialin p of degreer/2 —1 (i.e., of degree 1 and 3, respectively). Things,
however, don’t remain as simple, for larger values of r—probably for most
larger values of r. To illustrate how things can change, letus focusonr = 24.

1.5. Our first “sample problem.". Define, then, N(p) to be the number of
ways in which p can be written as a sum of 24 squares of whole numbers.

Recall that squares of positive numbers, negative numbers and zero are
all allowed, and the ordering of the squares of the numbers that occur in this
summation also counts. Thus, the first prime number, 2, can already be writ-
ten as a sum of 24 squares of whole numbersin 1, 104 ways. So:

N(2) =1,104.



What about N (p) for the other prime numbers p = 3,5,7,11,...? Hereis

some data.
2 1104
3 16192
5 1362336
7 | 44981376

11 | 6631997376

13 | 41469483552

17 | 793229226336

19 | 2697825744960

23 | 22063059606912

29 | 282507110257440

31 | 588326886375936

37 | 4119646755044256

41 | 12742799887509216

43 | 21517654506205632

47 | 57242599902057216

53 | 214623041906680992

59 | 698254765677746880

61 | 1007558483942335776
67 | 2827903926520931136
71 | 5351602023957373056
73 | 7264293802635839712
79 | 17319684851070915840
83 | 29819539398107307072
89 | 64258709626203556320
97 | 165626956557080594016
Eyeballing the data, it is already convincingly clear that N (p) is growing
less than exponentially, for otherwise the shadow of figures on the page
would probably look triangular. Following the pattern we’ve seen for the
smaller values of r we have considered we might expect that N(p) be a
polynomial in p of degree ¥/2 — 1 = 11.If we had enough data I imagine we
might “curve-fit" a polynomial approximation. But happily, without having to
lean on numerical experimentation, certain theoretical issues—whichIdon’t
want to get into—allow us to guess the following good approximation for the
values N (p); namely the polynomial in p of degree 11:
16

Napprox(p) = @(PH +1).

The difference, then, between the data and our good approximation is:

Error(p) :== N(p) — Ngprox(p) = N(p) — 619761(1711-4’1).

This error term been proven to be square-root small. And perhaps one
should emphasize that this square-root smallness statement is hardly an



elementary result: it is a consequence of deep work of Deligne. In fact, using
the work of Deligne I am alluding to, you can show that:

66,304

691 )
Whatwith that hefty constant, 62’3f4 ,the “smallness" of our error term here
may not impress us for quite a while as we systematically tabulate the values
of N(p),but—of course— thisresult tells us that as we getinto the high prime
numbers our data will hug startlingly close to the simple smooth curve

F0) = o

91
1.6. The “nextquestion". Whenever some element of some theory is settled,
or is considered settled, many of us mathematicians propose a subsequent
plan of inquiry with that phrase: “So, the next question to askis..."
Here too. Given the precise inequality
66,304 il
691
described in the previous section, and given the fact that this represents one
consequence of what has been a great project that has spanned half a centu-
ry of progress in number theory, some natural (and related) “next" questions
arise. We might—for example—ask

|Error(p)| <

(x'1 +1).

|Error(p)| <

¢ Is the bound on this error term (e.g., the constant 6%‘5{)4) is the best
possible?

o Isf(x) = % (x'! + 1) the bestpolynomial approximation to our data?

e Might we, more specifically, find another polynomial g(x) which
beatsf (x) in the sense that the absolute values of the corresponding
error terms |[N(p) — g(p)| are < C+/p'T with a constant C that is

strictly less than %3247

e For any given constant C <
prime numbers p for which

IN(p) —f(p)| < Cyp't.

e Wemight ask what that proportion s, as a function of C.
e Wemight ask for the proportion of primes p for which the error term
is positive, i.e., where our good approximation is an undercount.

Tobe sure, we would want to phrase such questions not only about our specif-
ic “sample problem" but about the full range of problems for which we have—
thanks to Deligne et al— such good square-root close approximations.

Itis the Sato-Tate Conjecture that addresses this “next," more delicate, tier
of questions®.

6%‘§f4 is there a positive proportion of

2As is only to be expected, there are whole books of questions about this sample prob-
lem that one could ask, and mathematicians have asked—some of these questions being
structurally important, and some at least traditionally of great interest. Eg., how often



1.7. The distribution of scaled error terms. Given that in our sample prob-

lem we know the bound
66,304
E < Pt Bl 11
|Error(p)| 691 P,
let us focus our microscope on the fluctuations here. Namely, consider the
scaled error term

Error(p) ~ N(p) — g+ 1)
Scaled Error(p) := 5303 Z“ = 6630291’,11

691 691

so that we have:

—1 < ScaledError(p) < +1.

About this type of scaled error value distribution, let me recall the words
of Susan Holmes, a mathematician and statistician at Stanford, who—when
I sent her some numerical computations related to a similar number theo-
retic problem for which I had some statistical questions—exclaimed: “what
beautiful data!"

But what can we say further about this data? How do these scaled error
values distribute themselves on the interval [—1, +1]? That is, what is the
functionI — 2(I) that associates to any subinterval I containedin [—1, +1]
the probability P(I) that for a randomly chosen prime number p its scaled
error term Error(p) liesinI?

In 1960, Mikio Sato (by studying numerical data) and John Tate (following
a theoretical investigation) predicted—for a large class of number theoretic
questions including many problems of current interest, of which our exam-
ple is one—that the values of the scaled error terms for data in these prob-
lems conforms to a specific probability distribution, Usually the Sato-Tate
conjecture predicts that this distribution is no more complicated than the el-
ementary function t — %\/1 — t2,i.e., the thing whose graph is a semi-circle
of radius 1 centered at the origin, but squished vertically to have its integral
equal to one. This makes it far from the Gaussian normal distribution! Indeed,
Sato and Tate predict this type of behavior in our example problem, so that
their conjecture would have it that

2
P() = ;J \1 — t2dt.
I
This is still an open question, for our sample problem! Nevertheless, we

have animpressive amount of data in support of it (see below).

To compute this data for primes up to 10° in reasonable time required
much ingenuity on the part of William Stein. For amore complete description

is our approximate value Napprox(p) above exactly equal to the actual value N (p)? A
conjecture of Lehmer would say that this never happens.



Figure 1.4. Probability distribution of error terms. The
Sato-Tatedistribution %\/1 — t2,the smooth profile curve
in this figure, can be compared with the probability dis-
tribution of scaled error terms for the number of ways
N(p) in which a prime number p can be written as a sum
of 24 squares (p < 10°). These computations were made
by William Stein.

of what these computations entail, together with other background material,
consult William Stein’s: http://sage.math.washington.edu:8100,/193

The great breakthrough last Spring was the resolution of the Sato-Tate
conjecture for alarge class of elliptic curves.

2. AN ELLIPTIC CURVE, AND A NEW “SAMPLE PROBLEM"

2.1. The number of points of an elliptic curve mod p; for varying p. The
example we will use is one of the favorites of many number theorists, namely
the curve in the plane, call it E, cut out by the equation
yi+y=x3-x2

This is an elliptic curve that is something of a showcase for number theory,
in that it has been extensively studied—much is known about it—and yet it
continues to repay study, for—as with all other elliptic curves—its deeper
features have yet to be understood.

This curve E : y? + y = x3 — x2 when extended to the projective plane
has exactly one rational point on the line at infinity, and if you stipulate that
that unique point “at infinity" be the origin, there is a unique algebraic group
law on E, allowing us—for any field k of characteristic different from 11 (i.e.,
any field where 11 # 0)—to endow the set consisting of « and the points of
E with values (x,y) = (a,b) € k with the structure of an abelian group. Let
k be of characteristic different from 11 and let us denote by E (k) this group
of k-rational points of E. The reason why we have to exclude 11 is that the
polynomial equation above modulo 11 has a singular point.

Every one of these groups E (k) contains the five rational points

{ool (0!0)! (01_1)1 (110)! (1!_1)1}

10



and it isn’t difficulty to check that these five points comprise a cyclic sub-
group of E (k) of order five. The datawe shall be focussing on, in this problem
is the number of rational points that E has over the prime field containing p el-
ements (excluding, again, p = 11). So, let p be a prime number (different from
11) and let F, denote the field of integers modulo p, and define

N(p) := the number of elements in the finite group E(F,).

There is much that is surprising in this “data.’ That is the numerical func-
tion

p— N(p)
or (essentially equivalently) the error term we are now concentrating on:

p — Error(p) =N({p)-(p+1)

and it can be expressed in a few quite different-sounding ways. Here is one:
Expand the infinite product

q]_[(l—q )2(1 - g''m? = > ang"

and we have that:
Error(p) = —ap.

Here is what N (p) looks like for small primes p:

14 2 357 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
N(p) 5 55 10 10 20 20 25 30 25 35 50 50 40 60 55 50 75 75
Since, from the first of the two definitions, N(p) is the order of a finite
group that contains a cyclic group of order five, we know, from Lagrange’s
theorem of elementary group theory that N(p) is divisible by 5, but what
more can we say about the data

p — N(p)?

This, now, will constitute our sample problem on which be focussing for
therest of this article.

For starters, following the format of the the previous sections of this arti-
cle, we should look for a “good approximation” to N(p). An old result due to
Helmut Hasse tells us that a square-root accurate approximation to N(p) is
given by the simple expression: p + 1, whichis, by the way, just the number of
points on aline in the projective plane over F,,.

It s a deep theorem (proved in the PhD thesis of Noam Elkies) that for this
elliptic curve as well as any other elliptic curved defined over Q there are an

11



infinite number of primes p such N (p) is equal to preciselythis simple expres-
sion p + 1.But, itis generally true that the error term for this approximation
is quite small. Explicitly, writing

Error(p) := N(p) — (p+1)
Hasse proved the inequality

|[Error(p)| = IN(p) — (p+1)| = 2/p.
Another way of saying this is that there is a conjugate pair of complex num-
bers e!% and e~ for which the error term can be written as

Error(p) := N(p) — (p+1) = Jp(e% + e %) = 2 /pcos(0,).

Following, again, the format of our example-problem of the previous sec-
tions, we might ask for the distribution of error values, and here we can do
this just by asking for the statistics of the rule that assigns to prime numbers
p the conjugate-pair of complex numbers on the unit circle in the complex
plane

i0p

pp_.ei

Here is some data:

Figure 2.1. The accumulation of red dots on a position
in this unit circle of the complex plane corresponds to
the frequency of occurrences of 6, in a small arc around
that position fora good number of primes p. The two axis
lines are the x-axis and y-axis; from the data—which con-
forms to the Sato-Tate statistics—you can guess whichis
which.

12



2.2. The Sato-Tate distribution. Thanks to the recent advance due to Taylor
etal, the data
p — cos(0,) = 1/2(e'% + e71%)

of the previous section conforms to the Sato-Tate distribution %\/1 —t2 .
Thatis,

Theorem 2.1. (The Sato-Tate Conjecture for our sample case) For any con-
tinuous function F (t) on the interval [—1, +1] we have that the limit

lim > F(cos0,)/m(X)
X—eo p<X

exists and is equal to the integral
+1
2 J F(t)V1 — t2dt.
™ J
To express our expected distribution in terms of the 6,’s, one could make
the change of variables (t — cos 0)
2 +1 1 +TT 2 +7T
~ J F(t)V1 — t2dt = — J F(cos 0) sin® 6d0 = ~ I F(cos 0) sin® 6d0,
-1 -1 0

i.e., expressing things in terms of 0 we get a “sine-squared" distribution. Here
is what the datalooks like in these terms:

Figure 2.2.

Inasequel to these notes (a sequel yet to be written) Iwould like to say a few
things for nonexperts about the actual proof of this theorem. But to conclude
here let us see how the problem reduces to a study of L-functions.

To prove the above theorem, it would be enough to show that

2 +1
lim > F(cos 0p)/m(X) = ~ J F(t)V1 - t2dt.
i p<X -1
for all real-valued polynomial functions F(t) by the Weierstrass approxi-
mation theorem, and therefore, since our taskis linear, we could concentrate

on proving this for F(t) = all the powers of the variable t,i.e.,
1,665,135, ...

13



or, for that matter it would suffice to prove it for F(t) = any other R-basis of
the ring of real-valued polynomials.

2.3. Bases for the ring of polynomials. Write the variable x as a sum « +
o~! so that any polynomial in x (with, e.g., real coefficients) is a polynomial
in ¢ and ! invariant under the interchange & ~ o« !, and conversely: any
polynomial in « and «~! invariant under the above interchange is a polyno-
mial in x. Consider then, these polynomials (let’s call them symmetric power
polynomials)

So = 1

1 = o+t

S, = o +1+a?

53 = o+t +al+a3

s8 = o+l +l+a i+

s$s = &+l +ol vl

(2.1)

which, when expressed as polynomials in x, look like

Sox) = 1

s1x) = x

sH(x) = x2-1

s3(x) = x3-2x

sa(x) = x*=3x°+1
ss(x) = x°—4x3 +3x

(2.2)

where s, (x) is a monic polynomial in x of degree n (these are also called the
Chebychev polynomials of the second kind). They form a basis of the vector
space of polynomials in the variable x. Any collection of products

{Sm(Zt)Sn(Zt)}(m,n)e’J

forms a basis of the vector space of polynomials in the variable t where 7 is
a collection of a pairs of nonnegative integers such that the sums m + nrun
through all nonegative numbers with no repeats.

Here is an elementary calculus exercise:

Proposition 2.2. IfF(t) = s,,(2t)s,(2t) withm + n then

+1
%J F(OVT = t2dt = 0.
-1

14



Corollary 2.3. Theorem 2.1 would follow if for every positive integer k there is
a pair of distinct nonnegative integers (n, m) withn + m = k and such that
lim > $,(2¢c0s0,)s,(2cos0,)/m(X) = 0.

X—o0 pX

But how can we get that such limits vanish? A standard strategy—in fact, it
seems, the only known strategy—is to invoke L functions. So we turn to:

2.4. L-functions. Tostudy thedata {p — +0,} effectivelyitisagoodidea to
“packageit"into complex analytic functions (Dirichlet series) whose behavior
will tell us about the limits described in Corollary 2.3.

Let us do this. For any choice of prime number p different from 11 and for
any pair of nonnegative numbers 0 < m < n, define the local factor atp of the
L-functionL,, ,(s) as follows:

m n
LEI’IZ,L(S) = n n (1- ei(m+n—2j—2k)9pp—s)*1
Jj=0k=0
If m (or n) is zero, the factors in “I}"," (or “[T;_,") don’t occur, so, for ex-
ample:

n

Lyl (s) : l_[ (20 p)

Now form the infinite product over all prime numbers p different from 11:

Lin(s):= []LZ}(s)

p

and expand this to get a Dirichlet series

Linn(8) = D amn(r)r.
r=0

The terms a,, , (r) are easily computed: we have, for example, that an, , (p) =
Sm(2 cos 0,)s8,(2 cos 0,) for p a prime number different from 11, and for any
positive integer r the term ap, ,(r) is bounded from above in absolute value
by a fixed polynomial (depending only on m and n) inlog(r). This guarantees
that the Dirichlet series L, ,(s) converges in the half-plane Re(s) > 1.

Here we rely on analytic number theory (in the form of a classical theorem
of Wiener and Ikehara) which gives us that if we know enough further analyt-
ic facts about these Dirichlet series Y a,,,(r)r~* we can control limits of the
form

lim Zp<X Am,n (P)

X—o0 T (X) ’
i.e., since dy,,(p) = Sm(2cos6,)s,(2cos0,) (p # 11) these are exactly the
limits we are interested in.



Proposition 2.4. Letm < n. If Ly, ,(s) extends to a meromorphic function on
the entire complex plane, holomorphic onRe(s) > 1 and nonzero on all points
Re(s) = 1 otherthans = 1 then

)1(11130 D sm(2¢080,)8,(2cos 0,)/m(X) = 0.
p<X

If, by the way, L, ,(s) extended to a meromorphic function on the entire
complex plane, holomorphic onRe(s) > 1 except for having a pole of order k
ats = 1 the analytic proposition above would tell us that the limit is k, rather
than 0.

This analytic theorem follows from classical results due to Weiner and Ike-
hara. A beautiful discussion of these ideas and proofs can be found in the
Appendix to Chapter 1 of Serre’s monograph [7]. See also Tate’s article [11],
Shahidi’s article [9] and Serre’s letter to Shahidi [8] that discusses in some de-
tail the implications in the direction of the Sato-Tate conjecture that would
followif one assumes that the L, 's satisfy the hypotheses of Proposition 2.4
for v < d. This knowledge is known for v = 1 (our “sample problem" comes
from a modular form; indeed by the celebrated results regarding modularity
of elliptic curves, it would be known for any elliptic curve defined over Q that
we care to choose). Itis also known for v = 2 using an integral representation
due to Shimura [10]; see also Gelbart’s and Jacquet’s article [2]. It is known
for v3 = 3,4 by work of Shahidi; see the enlightening discussion in [9] about
this)’.

2.5. The coming together of different mathematical viewpoints. But how
canwe get thatDirichlet series suchas L, » (s) extend meromorphically to the
entire complex plane for enough values of (m, n) to guarantee that we have
computed all the moments of the distribution determined by our data? And
how can we determine whether these meromorphic extensions have (or bet-
ter:don’thave) zeroes or poles on theline Re(s) = 1? A standard strategy—in
fact, it seems, the only known strategy to get L-functions to have all the an-
alytic properties that they need to have is to connect these L-functions with
automorphic forms over Q or with pairs of automorphic forms on GL,, and
GL, over Q relying on ideas of Rankin-Selberg. For the problem we are inter-
ested in, it turns out that one gets sufficiently valuable information if one can
make the analogous connection with automorphic forms over some number
field F—not necessarily Q—so long as F is Galois over Q, and totally real.

Part of the beauty of the new theorem we are discussing—which applies, in
fact, to all elliptic curves over Q that have at least one prime of multiplicative
reduction—is how it pulls together work from significantly different view-
points. There are three major pieces that go into it: work of Laurent Clozel,
Michael Harris, and Richard Taylor) on modular lifting and automorphic rep-
resentation theory, work of Michael Harris, Nicholas Shepherd-Barron, and

3The corresponding symmetric cube and fourth power of the modular form of weight
two (corresponding to our sample problem) are cuspidal automorphic forms; cf. the
articles[4], [5] by Kim and Shahidi.
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Richard Taylor bringing in an extraordinary piece of algebraic geometry: the
pencil of Calabi-Yau varieties

XP 4+ X X = (n+ DEXo X ... Xy,

for even values of n, parametrized by the variable t; and the last: Richard
Taylor’s major discovery in Galois deformation theory which, using ideas
of Mark Kisin, improved dramatically the mechanism of modular lifting,
allowing Richard Taylor to prove this extraordinary result.

2.6. Expository accounts of this recent work. Different audiences benefit
from different shapes of exposition. I wrote a brief “news" article in the jour-
nal Nature [6] meant to give a hint of the nature of the Sato-Tate Conjecture
and some related mathematical problems to scientists who are not neces-
sarily familiar with much modern mathematics. For professional mathemati-
cians, anumber of excellent articles and videos—requiring different levels of
prerequisites of their audiences—are devoted to exposing this material:

(1) Available through the MSRI website (http://www.msri.org/):

(a) Anintroductory one hour lecture by Nicholas Katz emphasizing
the background and the historical perspective of the work.

(b) A series of lectures for a number theory workshop, by Richard
Taylor; by Michael, Harris; and by Nicholas Shepherd-Barron,
where an exposition of the proofitselfis given.

(2) Two hours of expository lectures by Laurent Clozel on this topic
which goes in considerable detail through the ideas of the proof,
aimed at a general mathematical audience, delivered in the confer-
ence on Current Developments in Mathematics, at Harvard Universi-
ty. The notes for these should soon be available as well.

(3) An expository article by Michael Harris: “The Sato-Tate Conjecture:
introduction to the proof.” This will be submitted to the proceedings
of the Ecole d’été Franco-Asiatique, held at the IHES during the sum-
mer of 2006.
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